CC BY 4.0 · Arq Neuropsiquiatr 2024; 82(11): s00441791658
DOI: 10.1055/s-0044-1791658
Original Article

Association of lamina cribrosa thickness and hippocampal volume in Alzheimer's disease patients

Associação entre a espessura da lâmina cribrosa e o volume do hipocampo em pacientes com doença de Alzheimer
1   City Hospital of Ankara, Neurology Department, Ankara, Turkey.
,
2   City Hospital of Ankara, Ophthalmology Department, Ankara, Turkey.
,
3   City Hospital of Kayseri, Neurology Department, Kayseri, Turkey.
,
4   City Hospital of Kayseri, Ophtalmology Department, Kayseri Turkey.
,
5   City Hospital of Kayseri, Radiology Department, Kayseri, Turkey.
› Author Affiliations

Abstract

Background Alzheimer's disease (AD) is the most common cause of dementia and affects a large portion of the elderly population worldwide.

Objective To analyze the relationship between lamina cribrosa thickness (LCT) and hippocampal volume in patients with AD and mild cognitive impairment (MCI).

Methods The sample in the present study consisted of 20 recently diagnosed MCI patients, 20 recently diagnosed AD patients, and 20 matched healthy volunteers. Every patient underwent magnetic resonance imaging (MRI) scans. The VolBrain software (open-access platform for MRI brain analysis) was used to calculate the hippocampal volume. Optical coherence tomography was performed to measure the LCT. Analysis of variance and Pearson chi-squared tests were employed to assess the results.

Results The lowest total hippocampal volume (p < 0.05) was in the AD group, which was 6.14 ± 0.66 mm3, while in the control group, it was 7.7 ± 9.65 mm3, and 6.69 ± 0.46 mm3 in the MCI group. In comparison to the rest of the groups, in the AD group, the LCT was the thinnest (202.17 ± 16.35 µm). As per the results of the study population as a whole, low hippocampal volume causes low LCT, which shows an important relationship (r: 0.41; p < 0.05).

Conclusion The current findings present evidence of the relationship between hippocampal volume and LCT in patients with AD and MCI.

Resumo

Antecedentes A doença de Alzheimer (DA) é a causa mais comum de demência e afeta uma grande parcela da população idosa em todo o mundo.

Objetivo Analisar a relação entre a espessura da lâmina cribrosa (ELC) e o volume do hipocampo em pacientes com DA e comprometimento cognitivo leve (CCL).

Métodos A amostra neste estudo consistiu em 20 pacientes com diagnóstico recente de CCL, 20 pacientes com DA recentemente diagnosticados e 20 voluntários saudáveis pareados. Todos os pacientes foram submetidos a exames de ressonância magnética (RM). O programa VolBrain (plataforma de acesso aberto para análise cerebral por RM) foi utilizado para calcular o volume do hipocampo. Tomografia de corrência óptica foi feita para medir a ELC. Os testes análise de variância (ANOVA) e qui-quadrado de Pearson foram empregados para avaliar os resultados.

Resultados O menor volume total do hipocampo (p < 0,05) foi no grupo DA, que foi 6,14 ± 0,66 mm3, enquanto no grupo controle foi 7,7 ± 9,65 mm3 e 6,69 ± 0,46 mm3 no grupo CCL. Em comparação com os demais grupos, no grupo DA, a ELC foi a mais fina (202,17 ± 16,35 µm). De acordo com os resultados da população estudada como um todo, o baixo volume do hipocampo causa baixa ELC, o que mostra uma relação importante (r: 0,41; p < 0,05).

Conclusão Os presentes achados apresentam evidências da relação entre o volume do hipocampo e a ELC em pacientes com DA e CCL.

Authors' Contributions

EKU: investigation, conceptualization, validation, formal analysis, fundraising, data management, methodology, project management, resources, software, monitoring, visualization, and writing – initial design, review & editing; DMU: investigation, resources, software, methodology, validation, and writing – review & editing; MFG: conceptualization, formal analysis, resources, and software; AÇ: resources, conceptualization, software, and formal analysis; TTT: investigation, methodology, resources, software, validation, and writing – review & editing.


Editor-in-Chief: Hélio A. G. Teive.


Associate Editor: Leonardo Cruz de Souza




Publication History

Received: 14 April 2024

Accepted: 30 July 2024

Article published online:
03 November 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

Bibliographical Record
Ersin Kasım Ulusoy, Döndü Melek Ulusoy, Mehmet Fatih Göl, Ayşe Çiçek, Turgut Tursem Tokmak. Association of lamina cribrosa thickness and hippocampal volume in Alzheimer's disease patients. Arq Neuropsiquiatr 2024; 82: s00441791658.
DOI: 10.1055/s-0044-1791658
 
  • References

  • 1 Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol 2013; 12 (06) 609-622
  • 2 Migliaccio R, Agosta F, Possin KL. et al. Mapping the progression of atrophy in early- and late-onset Alzheimer's disease. J Alzheimers Dis 2015; 46 (02) 351-364
  • 3 Janocko NJ, Brodersen KA, Soto-Ortolaza AI. et al. Neuropathologically defined subtypes of Alzheimer's disease differ significantly from neurofibrillary tangle-predominant dementia. Acta Neuropathol 2012; 124 (05) 681-692
  • 4 Sheelakumari R, Kesavadas C, Lekha VS, Justus S, Sarma PS, Menon R. Structural correlates of mild cognitive impairment: A clinicovolumetric study. Neurol India 2018; 66 (02) 370-376
  • 5 Senturk G, Bilgic B, Arslan AB. et al. Cognitive and anatomical correlates of anosognosia in amnestic mild cognitive impairment and early-stage Alzheimer's disease. Int Psychogeriatr 2017; 29 (02) 293-302
  • 6 Dong A, Toledo JB, Honnorat N. et al; Alzheimer's Disease Neuroimaging Initiative. Heterogeneity of neuroanatomical patterns in prodromal Alzheimer's disease: links to cognition, progression and biomarkers. Brain 2017; 140 (03) 735-747
  • 7 Park SA, Kang JH, Kang ES. et al. A consensus in Korea regarding a protocol to reduce preanalytical sources of variability in the measurement of the cerebrospinal fluid biomarkers of Alzheimer's disease. J Clin Neurol 2015; 11 (02) 132-141
  • 8 den Haan J, Janssen SF, van de Kreeke JA, Scheltens P, Verbraak FD, Bouwman FH. Retinal thickness correlates with parietal cortical atrophy in early-onset Alzheimer's disease and controls. Alzheimers Dement (Amst) 2017; 10: 49-55 . Doi: 10.1016%2Fj.dadm.2017.10.005
  • 9 Wang M, Zhu Y, Shi Z, Li C, Shen Y. Meta-analysis of the relationship of peripheral retinal nerve fiber layer thickness to Alzheimer's disease and mild cognitive impairment. Shanghai Jingshen Yixue 2015; 27 (05) 263-279
  • 10 van de Kreeke JA, Nguyen H-T, den Haan J. et al. Retinal layer thickness in preclinical Alzheimer's disease. Acta Ophthalmol 2019; 97 (08) 798-804 . Doi: 10.1111%2Faos.14121
  • 11 Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM. Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 2011; 152 (01) 87-95.e1
  • 12 Lu Y, Li Z, Zhang X. et al. Retinal nerve fiber layer structure abnormalities in early Alzheimer's disease: evidence in optical coherence tomography. Neurosci Lett 2010; 480 (01) 69-72
  • 13 McKhann GM, Knopman DS, Chertkow H. et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7 (03) 263-269
  • 14 Fischl B, Salat DH, Busa E. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33 (03) 341-355
  • 15 Manjón JV, Coupé P. volBrain: An Online MRI Brain Volumetry System. Front Neuroinform 2016; 10: 30 . Doi: 10.3389%2Ffninf.2016.00030
  • 16 Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 2008; 146 (04) 496-500
  • 17 Kapasi A, DeCarli C, Schneider JA. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol 2017; 134 (02) 171-186
  • 18 Habib N, McCabe C, Medina S. et al. Disease-associated astrocytes in Alzheimer's disease and aging. Nat Neurosci 2020; 23 (06) 701-706
  • 19 Fox NC, Ridgway GR, Schott JM. Algorithms, atrophy and Alzheimer's disease: cautionary tales for clinical trials. Neuroimage 2011; 57 (01) 15-18
  • 20 Saeed U, Mirza SS, MacIntosh BJ. et al. APOE-ε4 associates with hippocampal volume, learning, and memory across the spectrum of Alzheimer's disease and dementia with Lewy bodies. Alzheimer's Dement 2018; 14: 1137-1147
  • 21 Tsuang D, Leverenz JB, Lopez OL. et al. APOE ε4 increases risk for dementia in pure synucleinopathies. JAMA Neurol 2013; 70 (02) 223-228
  • 22 Beach TG, Kuo YM, Spiegel K. et al. The cholinergic deficit coincides with Abeta deposition at the earliest histopathologic stages of Alzheimer disease. J Neuropathol Exp Neurol 2000; 59 (04) 308-313
  • 23 Ning A, Cui J, To E, Ashe KH, Matsubara J. Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 2008; 49 (11) 5136-5143
  • 24 Brazile BL, Yang B, Waxman S. et al. Lamina Cribrosa Capillaries Straighten as Intraocular Pressure Increases. Invest Ophthalmol Vis Sci 2020; 61 (12) 2 . Doi: 10.1167%2Fiovs.61.12.2
  • 25 Snyder PJ, Johnson LN, Lim YY. et al. Nonvascular retinal imaging markers of preclinical Alzheimer's disease. Alzheimers Dement (Amst) 2016; 4: 169-178 . Doi: 10.1016%2Fj.dadm.2016.09.001
  • 26 La Morgia C, Ross-Cisneros FN, Koronyo Y. et al. Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol 2016; 79 (01) 90-109
  • 27 Kirbas S, Turkyilmaz K, Anlar O, Tufekci A, Durmus M. Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol 2013; 33 (01) 58-61
  • 28 Lee EJ, Kim T-W, Lee DS. et al. Increased CSF tau level is correlated with decreased lamina cribrosa thickness. Alzheimers Res Ther 2016; 8: 6
  • 29 Kayabasi U, Sergott R, Rispoli M. Retinal examination for the diagnosis of Alzheimer's disease. Int J Ophthalmic Pathol 2014; 3: 4-7 . Doi: 10.1007%2Fs00401-016-1613-6
  • 30 Folego G, Weiler M, Casseb RF, Pires R, Rocha A. Alzheimer's Disease Detection Through Whole-Brain 3D-CNN MRI. Front Bioeng Biotechnol 2020; 8 (08) 534592
  • 31 Koedam EL, Lehmann M, van der Flier WM. et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 2011; 21 (12) 2618-2625
  • 32 Whitwell JL, Dickson DW, Murray ME. et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer's disease: a case-control study. Lancet Neurol 2012; 11 (10) 868-877
  • 33 Acer N, Bastepe-Gray S, Sagiroglu A. et al. Diffusion tensor and volumetric magnetic resonance imaging findings in the brains of professional musicians. J Chem Neuroanat 2018; 88: 33-40
  • 34 Frost S, Guymer R, Aung KZ. et al; AIBL Research Group. Alzheimer's disease and the early signs of age-related macular degeneration. Curr Alzheimer Res 2016; 13 (11) 1259-1266