Subscribe to RSS
DOI: 10.1055/s-0044-1791754
Anterior Shoulder Instability: Pre- and Postoperative Imaging

Abstract
Treatment algorithms for anterior glenohumeral instability are evolving. Identification of soft tissue injuries remains important because stand-alone labrum and ligament repairs are a mainstay of primary intervention. Increasingly recognized is the importance of bone lesions, particularly the synergistic effects of bipolar bone loss in the glenoid track model. Accordingly, reporting and measurement of bone lesions is crucial to treatment planning, especially in patients with a failed Bankart repair. This review covers (1) anatomy related to anterior shoulder instability, (2) preoperative imaging assessment of soft tissue injuries, (3) postoperative imaging assessment of soft tissue injuries, (4) imaging techniques for soft tissue injuries, (5) preoperative imaging of bone injuries, and (6) postoperative imaging of bone injuries.
Keywords
anterior instability - distal tibial allograft - glenoid bone loss - remplissage - labrum tearPublication History
Article published online:
11 February 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Liu F, Cheng X, Dong J. et al. Imaging modality for measuring the presence and extent of the labral lesions of the shoulder: a systematic review and meta-analysis. BMC Musculoskelet Disord 2019; 20 (01) 487
- 2 Balg F, Boileau P. The instability severity index score. A simple pre-operative score to select patients for arthroscopic or open shoulder stabilisation. J Bone Joint Surg Br 2007; 89 (11) 1470-1477
- 3 White AE, Patel NK, Hadley CJ, Dodson CC. An algorithmic approach to the management of shoulder instability. J Am Acad Orthop Surg Glob Res Rev 2019; 3 (12) e19.00168
- 4 Itoi E, Yamamoto N, Di Giacomo G, Marcello G. Glenoid track revisited. J Shoulder Elbow Surg 2024; S1058-2746 (24)00326-4
- 5 Di Giacomo G, Itoi E, Burkhart SS. Evolving concept of bipolar bone loss and the Hill-Sachs lesion: from “engaging/non-engaging” lesion to “on-track/off-track” lesion. Arthroscopy 2014; 30 (01) 90-98
- 6 Witherspoon JW, Smirnova IV, McIff TE. Neuroanatomical distribution of mechanoreceptors in the human cadaveric shoulder capsule and labrum. J Anat 2014; 225 (03) 337-345
- 7 Ishikawa H, Henninger HB, Kawakami J. et al. A stabilizing role of the glenoid labrum: the suction cup effect. J Shoulder Elbow Surg 2023; 32 (05) 1095-1104
- 8 Lippitt SB, Vanderhooft JE, Harris SL, Sidles JA, Harryman II DT, Matsen III FA. Glenohumeral stability from concavity-compression: a quantitative analysis. J Shoulder Elbow Surg 1993; 2 (01) 27-35
- 9 Burkart AC, Debski RE. Anatomy and function of the glenohumeral ligaments in anterior shoulder instability. Clin Orthop Relat Res 2002; (400) 32-39
- 10 Simão MN, Kobayashi MJ, Hernandes MA, Nogueira-Barbosa MH. Evaluation of variations of the glenoid attachment of the inferior glenohumeral ligament by magnetic resonance arthrography. Radiol Bras 2021; 54 (03) 148-154
- 11 Waldt S, Burkart A, Imhoff AB, Bruegel M, Rummeny EJ, Woertler K. Anterior shoulder instability: accuracy of MR arthrography in the classification of anteroinferior labroligamentous injuries. Radiology 2005; 237 (02) 578-583
- 12 Wischer TK, Bredella MA, Genant HK, Stoller DW, Bost FW, Tirman PF. Perthes lesion (a variant of the Bankart lesion): MR imaging and MR arthrographic findings with surgical correlation. AJR Am J Roentgenol 2002; 178 (01) 233-237
- 13 Tian CY, Cui GQ, Zheng ZZ, Ren AH. The added value of ABER position for the detection and classification of anteroinferior labroligamentous lesions in MR arthrography of the shoulder. Eur J Radiol 2013; 82 (04) 651-657
- 14 Liavaag S, Stiris MG, Svenningsen S, Enger M, Pripp AH, Brox JI. Capsular lesions with glenohumeral ligament injuries in patients with primary shoulder dislocation: magnetic resonance imaging and magnetic resonance arthrography evaluation. Scand J Med Sci Sports 2011; 21 (06) e291-e297
- 15 Song HT, Huh YM, Kim S. et al. Anterior-inferior labral lesions of recurrent shoulder dislocation evaluated by MR arthrography in an adduction internal rotation (ADIR) position. J Magn Reson Imaging 2006; 23 (01) 29-35
- 16 Porcellini G, Cecere AB, Giorgini A, Micheloni GM, Tarallo L. The GLAD lesion: are the definition, diagnosis and treatment up to date? A systematic review. Acta Biomed 2020; 91 (14-S): e2020020
- 17 Neviaser TJ. The GLAD lesion: another cause of anterior shoulder pain. Arthroscopy 1993; 9 (01) 22-23
- 18 Bokor DJ, Conboy VB, Olson C. Anterior instability of the glenohumeral joint with humeral avulsion of the glenohumeral ligament. A review of 41 cases. J Bone Joint Surg Br 1999; 81 (01) 93-96
- 19 Wang W, Huang BK, Sharp M. et al. MR arthrogram features that can be used to distinguish between true inferior glenohumeral ligament complex tears and iatrogenic extravasation. AJR Am J Roentgenol 2019; 212 (02) 411-417
- 20 Longo UG, Rizzello G, Ciuffreda M. et al. Humeral avulsion of the glenohumeral ligaments: a systematic review. Arthroscopy 2016; 32 (09) 1868-1876
- 21 Southgate DF, Bokor DJ, Longo UG, Wallace AL, Bull AM. The effect of humeral avulsion of the glenohumeral ligaments and humeral repair site on joint laxity: a biomechanical study. Arthroscopy 2013; 29 (06) 990-997
- 22 Freshman RD, Zhang AL, Benjamin Ma C. et al; MOON Shoulder Group collaborators. Factors associated with humeral avulsion of glenohumeral ligament lesions in patients with anterior shoulder instability: an analysis of the MOON Shoulder Instability Cohort. Orthop J Sports Med 2023; 11 (10) 23 259671231206757
- 23 Carlson CL. The “J” sign. Radiology 2004; 232 (03) 725-726
- 24 Chang EY, Hoenecke Jr HR, Fronek J, Huang BK, Chung CB. Humeral avulsions of the inferior glenohumeral ligament complex involving the axillary pouch in professional baseball players. Skeletal Radiol 2014; 43 (01) 35-41
- 25 Bui-Mansfield LT, Taylor DC, Uhorchak JM, Tenuta JJ. Humeral avulsions of the glenohumeral ligament: imaging features and a review of the literature. AJR Am J Roentgenol 2002; 179 (03) 649-655
- 26 Zlatkin MB. MRI of the postoperative shoulder. Skeletal Radiol 2002; 31 (02) 63-80
- 27 Pierce JL, Nacey NC, Jones S. et al. Postoperative shoulder imaging: rotator cuff, labrum, and biceps tendon. Radiographics 2016; 36 (06) 1648-1671
- 28 Sugimoto H, Suzuki K, Mihara K, Kubota H, Tsutsui H. MR arthrography of shoulders after suture-anchor Bankart repair. Radiology 2002; 224 (01) 105-111
- 29 Tiegs-Heiden CA, Rhodes NG, Collins MS, Fender QA, Howe BM. MR arthrogram of the postoperative glenoid labrum: normal postoperative appearance versus recurrent tears. Skeletal Radiol 2018; 47 (11) 1475-1481
- 30 Matsuki K, Sugaya H. Complications after arthroscopic labral repair for shoulder instability. Curr Rev Musculoskelet Med 2015; 8 (01) 53-58
- 31 Owens BD, Harrast JJ, Hurwitz SR, Thompson TL, Wolf JM. Surgical trends in Bankart repair: an analysis of data from the American Board of Orthopaedic Surgery certification examination. Am J Sports Med 2011; 39 (09) 1865-1869
- 32 Arciero RA, Mazzocca AD. Mini-open repair technique of HAGL (humeral avulsion of the glenohumeral ligament) lesion. Arthroscopy 2005; 21 (09) 1152
- 33 Fritz EM, Pogorzelski J, Hussain ZB, Godin JA, Millett PJ. Arthroscopic repair of humeral avulsion of the glenohumeral ligament lesion. Arthrosc Tech 2017; 6 (04) e1195-e1200
- 34 Levy DM, Cole BJ, Bach Jr BR. History of surgical intervention of anterior shoulder instability. J Shoulder Elbow Surg 2016; 25 (06) e139-e150
- 35 Kiss J, Mersich I, Perlaky GY, Szollas L. The results of the Putti-Platt operation with particular reference to arthritis, pain, and limitation of external rotation. J Shoulder Elbow Surg 1998; 7 (05) 495-500
- 36 Rand T, Freilinger W, Breitenseher M. et al. Magnetic resonance arthrography (MRA) in the postoperative shoulder. Magn Reson Imaging 1999; 17 (06) 843-850
- 37 Miller MD, Larsen KM, Luke T, Leis HT, Plancher KD. Anterior capsular shift volume reduction: an in vitro comparison of 3 techniques. J Shoulder Elbow Surg 2003; 12 (04) 350-354
- 38 Cohen SB, Wiley W, Goradia VK, Pearson S, Miller MD. Anterior capsulorrhaphy: an in vitro comparison of volume reduction—arthroscopic plication versus open capsular shift. Arthroscopy 2005; 21 (06) 659-664
- 39 Amini B, Beckmann NM, Beaman FD. et al; Expert Panel on Musculoskeletal Imaging. ACR Appropriateness Criteria® Shoulder Pain-Traumatic. J Am Coll Radiol 2018; 15 (5S): S171-S188
- 40 Jana M, Srivastava DN, Sharma R. et al. Magnetic resonance arthrography for assessing severity of glenohumeral labroligamentous lesions. J Orthop Surg (Hong Kong) 2012; 20 (02) 230-235
- 41 Cong T, Charles S, Greiner JJ. et al. Magnetic resonance arthrogram outperforms standard magnetic resonance imaging 2 weeks after first shoulder dislocation for labral tear diagnosis. Arthroscopy 2024 February 23 (Epub ahead of print)
- 42 Haroun H, Abd rabu A, Kotb A, Awad FA. Preoperative imaging of traumatic anterior shoulder instability: diagnostic effectiveness of magnetic resonance arthrography and comparison with conventional magnetic resonance imaging and arthroscopy. Curr Orthop Pract 2019; 30 (05) 446-452
- 43 Magee T. 3-T MRI of the shoulder: is MR arthrography necessary?. AJR Am J Roentgenol 2009; 192 (01) 86-92
- 44 Wagner SC, Schweitzer ME, Morrison WB, Fenlin Jr JM, Bartolozzi AR. Shoulder instability: accuracy of MR imaging performed after surgery in depicting recurrent injury—initial findings. Radiology 2002; 222 (01) 196-203
- 45 Magee T. Imaging of the post-operative shoulder: does injection of iodinated contrast in addition to MR contrast during arthrography improve diagnostic accuracy and patient throughput?. Skeletal Radiol 2018; 47 (09) 1253-1261
- 46 Chang EY, Bencardino JT, French CN. et al. SSR white paper: guidelines for utilization and performance of direct MR arthrography. Skeletal Radiol 2024; 53 (02) 209-244
- 47 Jarraya M, Roemer FW, Gale HI, Landreau P, D'Hooghe P, Guermazi A. MR-arthrography and CT-arthrography in sports-related glenolabral injuries: a matched descriptive illustration. Insights Imaging 2016; 7 (02) 167-177
- 48 Griffith JF, Antonio GE, Yung PS. et al. Prevalence, pattern, and spectrum of glenoid bone loss in anterior shoulder dislocation: CT analysis of 218 patients. AJR Am J Roentgenol 2008; 190 (05) 1247-1254
- 49 Willemot LB, Elhassan BT, Verborgt O. Bony reconstruction of the anterior glenoid rim. J Am Acad Orthop Surg 2018; 26 (10) e207-e218
- 50 Burkhart SS, De Beer JF. Traumatic glenohumeral bone defects and their relationship to failure of arthroscopic Bankart repairs: significance of the inverted-pear glenoid and the humeral engaging Hill-Sachs lesion. Arthroscopy 2000; 16 (07) 677-694
- 51 Shaha JS, Cook JB, Song DJ. et al. Redefining “critical” bone loss in shoulder instability: functional outcomes worsen with “subcritical” bone loss. Am J Sports Med 2015; 43 (07) 1719-1725
- 52 Walter WR, Samim M, LaPolla FWZ, Gyftopoulos S. Imaging quantification of glenoid bone loss in patients with glenohumeral instability: a systematic review. AJR Am J Roentgenol 2019; 212 (05) 1096-1105
- 53 Owens BD, Burns TC, Campbell SE, Svoboda SJ, Cameron KL. Simple method of glenoid bone loss calculation using ipsilateral magnetic resonance imaging. Am J Sports Med 2013; 41 (03) 622-624
- 54 Bakshi NK, Cibulas GA, Sekiya JK, Bedi A. A clinical comparison of linear- and surface area-based methods of measuring glenoid bone loss. Am J Sports Med 2018; 46 (10) 2472-2477
- 55 Rerko MA, Pan X, Donaldson C, Jones GL, Bishop JY. Comparison of various imaging techniques to quantify glenoid bone loss in shoulder instability. J Shoulder Elbow Surg 2013; 22 (04) 528-534
- 56 Yanke AB, Shin JJ, Pearson I. et al. Three-dimensional magnetic resonance imaging quantification of glenoid bone loss is equivalent to 3-dimensional computed tomography quantification: cadaveric study. Arthroscopy 2017; 33 (04) 709-715
- 57 Gyftopoulos S, Beltran LS, Yemin A. et al. Use of 3D MR reconstructions in the evaluation of glenoid bone loss: a clinical study. Skeletal Radiol 2014; 43 (02) 213-218
- 58 Seidl AJ, Joyce CD. Acute fractures of the glenoid. J Am Acad Orthop Surg 2020; 28 (22) e978-e987
- 59 Maio M, Sarmento M, Moura N, Cartucho A. How to measure a Hill-Sachs lesion: a systematic review. EFORT Open Rev 2019; 4 (04) 151-157
- 60 Gyftopoulos S, Beltran LS, Bookman J, Rokito A. MRI evaluation of bipolar bone loss using the on-track off-track method: a feasibility study. AJR Am J Roentgenol 2015; 205 (04) 848-852
- 61 Mook WR, Petri M, Greenspoon JA, Horan MP, Dornan GJ, Millett PJ. Clinical and anatomic predictors of outcomes after the Latarjet procedure for the treatment of anterior glenohumeral instability with combined glenoid and humeral bone defects. Am J Sports Med 2016; 44 (06) 1407-1416
- 62 McHale KJ, Sanchez G, Lavery KP. et al. Latarjet technique for treatment of anterior shoulder instability with glenoid bone loss. Arthrosc Tech 2017; 6 (03) e791-e799
- 63 Yamamoto N, Muraki T, An K-N. et al. The stabilizing mechanism of the Latarjet procedure: a cadaveric study. J Bone Joint Surg Am 2013; 95 (15) 1390-1397
- 64 Hurley ET, Matache BA, Wong I. et al; Anterior Shoulder Instability International Consensus Group. Anterior shoulder instability Part II-Latarjet, remplissage, and glenoid bone-grafting—an international consensus statement. Arthroscopy 2022; 38 (02) 224-233.e6
- 65 Beltran LS, Duarte A, Bencardino JT. Postoperative imaging in anterior glenohumeral instability. AJR Am J Roentgenol 2018; 211 (03) 528-537
- 66 Liles JL, Ganokroj P, Peebles AM, Mologne MS, Provencher CMT. Primary distal tibia allograft for restoration of glenohumeral stability with anterior glenoid bone loss. Arthrosc Tech 2022; 11 (06) e1039-e1043
- 67 Frank RM, Romeo AA, Richardson C. et al. Outcomes of Latarjet versus distal tibia allograft for anterior shoulder instability repair: a matched cohort analysis. Am J Sports Med 2018; 46 (05) 1030-1038
- 68 Moroder P, Schulz E, Wierer G. et al. Neer Award 2019: Latarjet procedure vs. iliac crest bone graft transfer for treatment of anterior shoulder instability with glenoid bone loss: a prospective randomized trial. J Shoulder Elbow Surg 2019; 28 (07) 1298-1307
- 69 Valencia M, Fernández-Bermejo G, Martín-Ríos MD. et al. Subscapularis structural integrity and function after arthroscopic Latarjet procedure at a minimum 2-year follow-up. J Shoulder Elbow Surg 2020; 29 (01) 104-112
- 70 Purchase RJ, Wolf EM, Hobgood ER, Pollock ME, Smalley CC. Hill-Sachs “remplissage”: an arthroscopic solution for the engaging Hill-Sachs lesion. Arthroscopy 2008; 24 (06) 723-726
- 71 Yang JS, Mehran N, Mazzocca AD, Pearl ML, Chen VW, Arciero RA. Remplissage versus modified Latarjet for off-track Hill-Sachs lesions with subcritical glenoid bone loss. Am J Sports Med 2018; 46 (08) 1885-1891
- 72 Horinek JL, Menendez ME, Narbona P, Lädermann A, Barth J, Denard PJ. Remplissage yields similar 2-year outcomes, fewer complications, and low recurrence compared to Latarjet across a wide range of preoperative glenoid bone loss. Arthroscopy 2022; 38 (10) 2798-2805
- 73 Park MJ, Garcia G, Malhotra A, Major N, Tjoumakaris FP, Kelly IV JD. The evaluation of arthroscopic remplissage by high-resolution magnetic resonance imaging. Am J Sports Med 2012; 40 (10) 2331-2336
- 74 Rhee YG, Cho NS, Yoo JH, Lee WG. Filling Index Score of Remplissage (FISOR): a useful measurement tool to evaluate structural outcome after remplissage. J Shoulder Elbow Surg 2015; 24 (04) 613-620
- 75 Saltzman BM, Riboh JC, Cole BJ, Yanke AB. Humeral head reconstruction with osteochondral allograft transplantation. Arthroscopy 2015; 31 (09) 1827-1834
- 76 Abballe VD, Walter WR, Lin DJ, Alaia MJ, Alaia EF. Anterior shoulder instability in the aging population: MRI injury pattern and management. AJR Am J Roentgenol 2021; 216 (05) 1300-1307