Subscribe to RSS
DOI: 10.1055/s-0044-1791803
The Role of CRISPR/Cas9 in Revolutionizing Duchenne's Muscular Dystrophy Treatment: Opportunities and Obstacles
Funding None.Abstract
Duchenne's muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle degeneration, leading to loss of ambulation, respiratory failure, and premature death. It affects approximately 1 in 3,500 live male births and is caused by mutations in the dystrophin gene, which impairs muscle fiber stability. Current treatments are limited to managing symptoms and slowing disease progression, with no curative therapies available. The advent of CRISPR/Cas9 gene-editing technology has introduced a promising approach for directly correcting the genetic mutations responsible for DMD. This review explores the potential of CRISPR/Cas9 as a transformative therapy for DMD, highlighting its successes in preclinical models, the challenges associated with its delivery, and the obstacles to its clinical application. While preclinical studies demonstrate the efficacy of CRISPR/Cas9 in restoring dystrophin expression and improving muscle function, significant hurdles remain, including optimizing delivery methods and ensuring long-term safety.
Keywords
CRISPR/Cas9 - Duchenne's muscular dystrophy - gene editing - gene therapy - preclinical modelsPublication History
Article published online:
18 October 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Stuttgart · New York
-
References
- 1 National Organisation for Rare Disorders. Duchenne Muscular Dystrophy. 2024 . Accessed September 28, 2024 at: https://rarediseases.org/rare-diseases/duchenne-muscular-dystrophy/
- 2 Chamberlain JR, Chamberlain JS. Progress toward gene therapy for Duchenne muscular dystrophy. Mol Ther 2017; 25 (05) 1125-1131
- 3 Hoffman EP, Brown Jr RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51 (06) 919-928
- 4 Min YL, Bassel-Duby R, Olson EN. CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med 2019; 70 (01) 239-255
- 5 Duan D. A new kid on the playground of CRISPR DMD therapy. Hum Gene Ther Clin Dev 2017; 28 (02) 62-64
- 6 Mata López S, Balog-Alvarez C, Vitha S. et al. Challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMD genetic mutation in canine Duchenne muscular dystrophy. PLoS One 2020; 15 (01) e0228072
- 7 Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun 2018; 9 (01) 1911
- 8 Munshi NV. CRISPR (clustered regularly interspaced palindromic repeat)/Cas9 system: a revolutionary disease-modifying technology. Circulation 2016; 134 (11) 777-779
- 9 Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351 (6268) 84-88
- 10 Zetsche B, Gootenberg JS, Abudayyeh OO. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163 (03) 759-771
- 11 Doench JG, Fusi N, Sullender M. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 2016; 34 (02) 184-191
- 12 Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018; 19 (12) 770-788
- 13 Anzalone AV, Randolph PB, Davis JR. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576 (7785) 149-157
- 14 Ryu SM, Koo T, Kim K. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 2018; 36 (06) 536-539
- 15 Kurt IC, Zhou R, Iyer S. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 2021; 39 (01) 41-46
- 16 Kleinstiver BP, Pattanayak V, Prew MS. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529 (7587) 490-495
- 17 Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014; 345 (6201) 1184-1188
- 18 Amoasii L, Hildyard JCW, Li H. et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 2018; 362 (6410) 86-91
- 19 Moretti A, Fonteyne L, Giesert F. et al. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med 2020; 26 (02) 207-214
- 20 Nelson CE, Hakim CH, Ousterout DG. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016; 351 (6271) 403-407
- 21 Frangoul H, Altshuler D, Cappellini MD. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 2021; 384 (03) 252-260
- 22 Esrick EB, Lehmann LE, Biffi A. et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med 2021; 384 (03) 205-215
- 23 Maggio I, Liu J, Janssen JM, Chen X, Gonçalves MA. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Sci Rep 2016; 6 (01) 37051
- 24 Zhang Y, Long C, Li H. et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 2017; 3 (04) e1602814
- 25 Echigoya Y, Lim KRQ, Nakamura A, Yokota T. Multiple exon skipping in the Duchenne muscular dystrophy hot spots: prospects and challenges. J Pers Med 2018; 8 (04) 41
- 26 Nakanishi T, Maekawa A, Suzuki M. et al. Construction of adenovirus vectors simultaneously expressing four multiplex, double-nicking guide RNAs of CRISPR/Cas9 and in vivo genome editing. Sci Rep 2021; 11 (01) 3961
- 27 Mukai H, Ogawa K, Kato N, Kawakami S. Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metab Pharmacokinet 2022; 44: 100450
- 28 Vavassori V, Ferrari S, Beretta S. et al. Lipid nanoparticles allow efficient and harmless ex vivo gene editing of human hematopoietic cells. Blood 2023; 142 (09) 812-826
- 29 Wang L, Li F, Dang L. et al. In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 2016; 17 (05) 626
- 30 Nelson CE, Wu Y, Gemberling MP. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 2019; 25 (03) 427-432
- 31 Dhoke NR, Kim H, Azzag K, Crist SB, Kiley J, Perlingeiro RCR. A novel CRISPR-Cas9 strategy to target dystrophin mutations downstream of exon 44 in patient-specific DMD iPSCs. Cells 2024; 13 (11) 972
- 32 Bladen CL, Salgado D, Monges S. et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 2015; 36 (04) 395-402
- 33 Brokowski C, Adli M. CRISPR ethics: Moral considerations for applications of a powerful tool. J Mol Biol 2019; 431 (01) 88-101
- 34 Zhang D, Hussain A, Manghwar H. et al. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol J 2020; 18 (08) 1651-1669
- 35 Long C, Amoasii L, Mireault AA. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016; 351 (6271) 400-403