CC BY 4.0 · Pharmaceutical Fronts 2024; 06(04): e355-e381
DOI: 10.1055/s-0044-1796646
Review Article

Recent Advances in the Synthesis of Sulfonamides Intermediates

Wei Liu
1   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education and Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People's Republic of China
,
Jianli Chen
2   Zhejiang Governor Triangle Biomedical Industrial Technology Research Park, Huzhou, People's Republic of China
,
Weike Su
1   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education and Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People's Republic of China
2   Zhejiang Governor Triangle Biomedical Industrial Technology Research Park, Huzhou, People's Republic of China
› Author Affiliations

Abstract

Sulfonamides are one of the most important synthons in drug synthesis, which can increase the water solubility of drugs and regulate their metabolism in vivo. According to statistics, nearly 30% of sulfur-containing drugs on the market contain sulfonamide groups, including omeprazole, hydrochlorothiazide, and other best-selling drugs. Synthesis of sulfonamide is therefore a very important part of new drug development and active pharmaceutical ingredient manufacturing. In this review, we will focus on the recent 5-year advances in the field of synthetic research and structural modification of sulfonamide-containing drugs and their intermediates. The synthesis strategies, including S−N construction, C−N cross-coupling, N−H functionalization, and C−H sulfonamidation, are discussed, hoping to provide new ideas for the researchers to prepare sulfonamides in a green and efficient way.



Publication History

Received: 09 July 2023

Accepted: 02 November 2024

Article published online:
06 December 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Scott KA, Njardarson JT. Analysis of US FDA-approved drugs containing sulfur atoms. Top Curr Chem (Cham) 2018; 376 (01) 5
  • 2 Das P, Delost MD, Qureshi MH, Smith DT, Njardarson JT. A survey of the structures of US FDA approved combination drugs. J Med Chem 2019; 62 (09) 4265-4311
  • 3 Devendar P, Yang GF. Sulfur-containing agrochemicals. Top Curr Chem (Cham) 2017; 375 (06) 82
  • 4 Zhu M, Wei W, Yang D. et al. Metal-free I2O5-mediated direct construction of sulfonamides from thiols and amines. Org Biomol Chem 2017; 15 (22) 4789-4793
  • 5 Tota A, St John-Campbell S, Briggs EL. et al. Highly chemoselective NH- and O-transfer to thiols using hypervalent iodine reagents: synthesis of sulfonimidates and sulfonamides. Org Lett 2018; 20 (09) 2599-2602
  • 6 Hayashi E, Yamaguchi Y, Kita Y, Kamata K, Hara M. One-pot aerobic oxidative sulfonamidation of aromatic thiols with ammonia by a dual-functional β-MnO2 nanocatalyst. Chem Commun (Camb) 2020; 56 (14) 2095-2098
  • 7 Kushwaha AK, Kamal A, Kumari P, Singh S. Metal-free photoredox catalyzed sulfonylation of phenylhydrazines with thiols. Org Lett 2024; 26 (18) 3796-3800
  • 8 Laudadio G, Barmpoutsis E, Schotten C. et al. Sulfonamide synthesis through electrochemical oxidative coupling of amines and thiols. J Am Chem Soc 2019; 141 (14) 5664-5668
  • 9 Blum SP, Karakaya T, Schollmeyer D, Klapars A, Waldvogel SR. Metal-free electrochemical synthesis of sulfonamides directly from (hetero)arenes, SO2, and amines. Angew Chem Int Ed Engl 2021; 60 (10) 5056-5062
  • 10 Vicente DA, Galdino D, Navarro M, Menezes PH. Electrochemical synthesis of sulfonamides in a graphite powder macroelectrode. Green Chem 2020; 22 (16) 5262-5266
  • 11 Shyam PK, Jang HY. Synthesis of sulfones and sulfonamides via sulfinate anions: revisiting the utility of thiosulfonates. J Org Chem 2017; 82 (03) 1761-1767
  • 12 Shyam PK, Son S, Jang HY. Copper-catalyzed sulfonylation of alkenes and amines by using thiosulfonates as a sulfonylating agent. Eur J Org Chem 2017; 2017 (34) 5025-5031
  • 13 Alvarez EM, Plutschack MB, Berger F, Ritter T. Site-selective C-H functionalization-sulfination sequence to access aryl sulfonamides. Org Lett 2020; 22 (12) 4593-4596
  • 14 Eid N, Karamé I, Andrioletti B. Straightforward and sustainable synthesis of sulfonamides in water under mild conditions. Eur J Org Chem 2018; 2018 (36) 5016-5022
  • 15 Li X, Chen F, Lu GP. Fe-based metal-organic frameworks for the synthesis of N-arylsulfonamides via the reactions of sodium arylsulfinates or arylsulfonyl chlorides with nitroarenes in water. Tetrahedron Lett 2018; 59 (48) 4226-4230
  • 16 Yang B, Lian C, Yue G. et al. Synthesis of N-arylsulfonamides through a Pd-catalyzed reduction coupling reaction of nitroarenes with sodium arylsulfinates. Org Biomol Chem 2018; 16 (43) 8150-8154
  • 17 Gatarz SE, Griffiths OM, Esteves HA. et al. Nitro-sulfinate reductive coupling to access (hetero)aryl sulfonamides. J Org Chem 2024; 89 (03) 1898-1909
  • 18 Poeira DL, Macara J, Faustino H. et al. Hypervalent iodine mediated sulfonamide synthesis. Eur J Org Chem 2019; 2019 (15) 2695-2701
  • 19 Lam LY, Chan KH, Ma C. Copper-catalyzed synthesis of functionalized aryl sulfonamides from sodium sulfinates in green solvents. J Org Chem 2022; 87 (13) 8802-8810
  • 20 Feng R, Li ZY, Liu YJ, Dong ZB. Selective synthesis of sulfonamides and sulfenamides from sodium sulfinates and amines. J Org Chem 2024; 89 (03) 1736-1747
  • 21 Wang M, Fan Q, Jiang X. Metal-free construction of primary sulfonamides through three diverse salts. Green Chem 2018; 20 (24) 5469-5473
  • 22 Marset X, Torregrosa-Crespo J, Martínez-Espinosa RM. et al. Multicomponent synthesis of sulfonamides from triarylbismuthines, nitro compounds, and sodium metabisulfite in deep eutectic solvents. Green Chem 2019; 21 (15) 4127-4132
  • 23 Wang X, Yang M, Kuang Y, Liu JB, Fan X, Wu J. Copper-catalyzed synthesis of sulfonamides from nitroarenes via the insertion of sulfur dioxide. Chem Commun (Camb) 2020; 56 (23) 3437-3440
  • 24 Chen K, Chen W, Han B, Chen W, Liu M, Wu H. Sequential C-S and S-N coupling approach to sulfonamides. Org Lett 2020; 22 (05) 1841-1845
  • 25 Konishi H, Tanaka H, Manabe K. Pd-catalyzed selective synthesis of cyclic sulfonamides and sulfinamides using K2S2O5 as a sulfur dioxide surrogate. Org Lett 2017; 19 (07) 1578-1581
  • 26 Mkrtchyan S, Iaroshenko VO. Mechanochemical synthesis of aromatic sulfonamides. Chem Commun (Camb) 2021; 57 (84) 11029-11032
  • 27 Du B, Wang Y, Sha W. et al. Copper-catalyzed selective aerobic oxidative cascade reaction of hydrazines, DABSO, and amines for the direct synthesis of sulfonamides. Asian J Org Chem 2016; 6 (02) 153-156
  • 28 Chen Y, Murray PRD, Davies AT, Willis MC. Direct copper-catalyzed three-component synthesis of sulfonamides. J Am Chem Soc 2018; 140 (28) 8781-8787
  • 29 Zhang M, Liu L, Wang B. et al. Direct synthesis of sulfonamides via synergetic photoredox and copper catalysis. ACS Catal 2023; 13 (17) 11580-11588
  • 30 Lo PKT, Chen Y, Willis MC. Nickel(II)-catalyzed synthesis of sulfinates from aryl and heteroaryl boronic acids and the sulfur dioxide surrogate DABSO. ACS Catal 2019; 9 (12) 10668-10673
  • 31 Zhu H, Shen Y, Deng Q, Huang C, Tu T. One-pot bimetallic Pd/Cu-catalyzed synthesis of sulfonamides from boronic acids, DABSO, and O-benzoyl hydroxylamines. Chem Asian J 2017; 12 (06) 706-712
  • 32 Zhu H, Shen Y, Deng Q. et al. Ligand-free Pd/Cu-catalyzed aminosulfonylation of aryl iodides for direct sulfonamide syntheses. Asian J Org Chem 2017; 6 (11) 1542-1545
  • 33 Liu T, Zheng D, Li Z, Wu J. A route to O-aminosulfonates and sulfonamides through insertion of sulfur dioxide and hydrogen atom transfer. Adv Synth Catal 2017; 359 (15) 2653-2659
  • 34 Zhang F, Zheng D, Lai L, Cheng J, Sun J, Wu J. Synthesis of aromatic sulfonamides through a copper-catalyzed coupling of aryldiazonium tetrafluoroborates, DABCO•(SO2)2, and N-chloroamines. Org Lett 2018; 20 (04) 1167-1170
  • 35 Kitamura S, Zheng Q, Woehl JL. et al. Sulfur(VI) fluoride exchange (SuFEx)-enabled high-throughput medicinal chemistry. J Am Chem Soc 2020; 142 (25) 10899-10904
  • 36 Lou TS, Bagley SW, Willis MC. Cyclic alkenylsulfonyl fluorides: palladium-catalyzed synthesis and functionalization of compact multifunctional reagents. Angew Chem Int Ed Engl 2019; 58 (52) 18859-18863
  • 37 Mukherjee P, Woroch CP, Cleary L. et al. Sulfonamide synthesis via calcium triflimide activation of sulfonyl fluorides. Org Lett 2018; 20 (13) 3943-3947
  • 38 Mahapatra S, Woroch CP, Butler TW. et al. SuFEx activation with Ca(NTf2)2: a unified strategy to access sulfamides, sulfamates, and sulfonamides from S(VI) fluorides. Org Lett 2020; 22 (11) 4389-4394
  • 39 Wei M, Liang D, Cao X. et al. A broad-spectrum catalytic amidation of sulfonyl fluorides and fluorosulfates. Angew Chem Int Ed Engl 2021; 60 (13) 7397-7404
  • 40 Talpaz M, Kiladjian JJ. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia 2021; 35 (01) 1-17
  • 41 Lin M, Luo J, Xie Y. et al. SuFEx reactions of sulfonyl fluorides, fluorosulfates, and sulfamoyl fluorides catalyzed by N-heterocyclic carbenes. ACS Catal 2023; 13 (22) 14503-14512
  • 42 Zu W, Liu S, Jia X, Xu L. Chemoselective N-arylation of aminobenzene sulfonamides via copper catalysed Chan–Evans–Lam reactions. Org Chem Front 2019; 6 (09) 1356-1360
  • 43 Laffoon JD, Chan VS, Fickes MG. et al. Pd-catalyzed cross-coupling reactions promoted by biaryl phosphorinane ligands. ACS Catal 2019; 9 (12) 11691-11708
  • 44 Mennen SM, Alhambra C, Allen CL. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org Process Res Dev 2019; 23 (06) 1213-1242
  • 45 Becica J, Hruszkewycz DP, Steves JE, Elward JM, Leitch DC, Dobereiner GE. High-throughput discovery and evaluation of a general catalytic method for N-arylation of weakly nucleophilic sulfonamides. Org Lett 2019; 21 (22) 8981-8986
  • 46 Kim T, McCarver SJ, Lee C, MacMillan DWC. Sulfonamidation of aryl and heteroaryl halides through photosensitized nickel catalysis. Angew Chem Int Ed Engl 2018; 57 (13) 3488-3492
  • 47 McGuire RT, Simon CM, Yadav AA, Ferguson MJ, Stradiotto M. Nickel-catalyzed cross-coupling of sulfonamides with (hetero)aryl chlorides. Angew Chem Int Ed Engl 2020; 59 (23) 8952-8956
  • 48 You T, Li J. Ni(cod)(duroquinone)-catalyzed C-N cross-coupling for the synthesis of N,N-diarylsulfonamides. Org Lett 2022; 24 (36) 6642-6646
  • 49 Song G, Song J, Dong J. et al. Ni-Catalyzed photochemial sulfamidation of aryl chlorides with soluble organic amine as base. Organometallics 2024; 43 (16) 1706-1712
  • 50 Fier PS, Maloney KM. NHC-catalyzed deamination of primary sulfonamides: a platform for late-stage functionalization. J Am Chem Soc 2019; 141 (04) 1441-1445
  • 51 Gómez-Palomino A, Cornella J. Selective late-stage sulfonyl chloride formation from sulfonamides enabled by Pyry-BF4 . Angew Chem Int Ed Engl 2019; 58 (50) 18235-18239
  • 52 Smith JM, Dixon JA, deGruyter JN, Baran PS. Alkyl sulfinates: radical precursors enabling drug discovery. J Med Chem 2019; 62 (05) 2256-2264
  • 53 Fier PS, Kim S, Maloney KM. Reductive cleavage of secondary sulfonamides: converting terminal functional groups into versatile synthetic handles. J Am Chem Soc 2019; 141 (46) 18416-18420
  • 54 Ai Y, Liu P, Liang R. et al. The N-alkylation of sulfonamides with alcohols in water catalyzed by a water-soluble metal–ligand bifunctional iridium complex [Cp*Ir(biimH2)(H2O)][OTf]2 . New J Chem 2019; 43 (27) 10755-10762
  • 55 Yamamoto H, Nakata K. Stereoconvergent chiral inductive diastereodivergent sulfonamidation of diastereomixtures of diarylmethanols with sulfonylamine catalyzed by lewis acids. Org Lett 2018; 20 (22) 7057-7061
  • 56 Fu W, Shen R, Bai E. et al. Reaction route and mechanism of the direct N-alkylation of sulfonamides on acidic mesoporous zeolite beta catalyst. ACS Catal 2018; 8 (10) 9043-9055
  • 57 Verdelet T, Ward RM, Hall DG. Direct sulfonamidation of primary and secondary benzylic alcohols catalyzed by a boronic acid/oxalic acid system. Eur J Org Chem 2017; 2017 (38) 5729-5738
  • 58 Polidano K, Allen BDW, Williams JMJ, Morrill LC. Iron-catalyzed methylation using the borrowing hydrogen approach. ACS Catal 2018; 8 (07) 6440-6445
  • 59 Reed-Berendt BG, Morrill LC. Manganese-catalyzed N-alkylation of sulfonamides using alcohols. J Org Chem 2019; 84 (06) 3715-3724
  • 60 Guru MM, Thorve PR, Maji B. Boron-catalyzed N-alkylation of arylamines and arylamides with benzylic alcohols. J Org Chem 2020; 85 (02) 806-819
  • 61 Ban Y, Liu Y, Zhang S, Jia X, Gao P, Yuan Y. Indium promotes direct sulfonamidation of unactivated alcohols. J Org Chem 2024; 89 (09) 6345-6352
  • 62 Jiang Y, You Y, Dong W, Peng Z, Zhang Y, An D. Copper-promoted desulfitative N-arylation of sulfonamides and sulfoximines with sodium arylsulfinates. J Org Chem 2017; 82 (11) 5810-5818
  • 63 Song B, Yu CB, Ji Y, Chen MW, Zhou YG. Synthesis of chiral sultams via palladium-catalyzed intramolecular asymmetric reductive amination. Chem Commun (Camb) 2017; 53 (10) 1704-1707
  • 64 Olu-Igbiloba OA, Sitzmann H, Manolikakes G. Merging cobalt-catalyzed C-H activation with the mannich reaction: a modular approach to alpha-substituted N-sulfonyl amines. J Org Chem 2024; 89 (10) 6903-6914
  • 65 Mahato S, Santra S, Zyryanov GV, Majee A. Metal-free amidation reactions of terminal alkynes with benzenesulfonamide. J Org Chem 2019; 84 (06) 3176-3183
  • 66 Lee D, Kim SM, Hirao H, Hong SH. Gold(I)/gold(III)-catalyzed selective synthesis of N-sulfonyl enaminone isomers from sulfonamides and ynones via two distinct reaction pathways. Org Lett 2017; 19 (18) 4734-4737
  • 67 Liang X, Huang X, Xiong M, Shen K, Pan Y. Copper(I)-catalyzed N-H olefination of sulfonamides for N-sulfonyl enaminone synthesis. Chem Commun (Camb) 2018; 54 (60) 8403-8406
  • 68 Kikuchi Y, Nakamura C, Matsuoka M, Asami R, Kitagawa O. Catalytic enantioselective synthesis of N-C axially chiral sulfonamides through chiral palladium-catalyzed N-allylation. J Org Chem 2019; 84 (12) 8112-8120
  • 69 Lu S, Ng SVH, Lovato K. et al. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation. Nat Commun 2019; 10 (01) 3061
  • 70 Ong JY, Ng XQ, Lu S, Zhao Y. Isothiourea-catalyzed atroposelective N-acylation of sulfonamides. Org Lett 2020; 22 (16) 6447-6451
  • 71 Li D, Wang S, Ge S, Dong S, Feng X. Asymmetric synthesis of axially chiral anilides via organocatalytic atroposelective N-acylation. Org Lett 2020; 22 (14) 5331-5336
  • 72 Gao Z, Yan CX, Qian J. et al. Enantioselective synthesis of axially chiral sulfonamides via atroposelective hydroamination of allenes. ACS Catal 2021; 11 (12) 6931-6938
  • 73 Liu Z, Ebadi A, Toughani M, Mert N, Vessally E. Direct sulfonamidation of (hetero)aromatic C-H bonds with sulfonyl azides: a novel and efficient route to N-(hetero)aryl sulfonamides. RSC Adv 2020; 10 (61) 37299-37313
  • 74 Kim Y, Park J, Chang S. A direct access to 7-aminoindoles via iridium-catalyzed mild C-H amidation of N-pivaloylindoles with organic azides. Org Lett 2016; 18 (08) 1892-1895
  • 75 Chen S, Feng B, Zheng X, Yin J, Yang S, You J. Iridium-catalyzed direct regioselective C4-amidation of indoles under mild conditions. Org Lett 2017; 19 (10) 2502-2505
  • 76 Lanke V, Prabhu KR. Iridium(III) catalyzed regioselective amidation of indoles at the C4-position using weak coordinating groups. Chem Commun (Camb) 2017; 53 (37) 5117-5120
  • 77 Hermann GN, Becker P, Bolm C. Mechanochemical iridium(III)-catalyzed C-H bond amidation of benzamides with sulfonyl azides under solvent-free conditions in a ball mill. Angew Chem Int Ed Engl 2016; 55 (11) 3781-3784
  • 78 Hou H, Zhao Y, Sheng S, Chen J. Iridium-catalyzed ortho-C−H amidation of benzenesulfonamides with sulfonyl azides. Adv Synth Catal 2019; 361 (18) 4393-4398
  • 79 Li Y, Feng Y, Xu L, Wang L, Cui X. Iridium-catalyzed direct ortho-C-H amidation of benzaldehydes through N-sulfonyl imines as a mask. Org Lett 2016; 18 (19) 4924-4927
  • 80 Wang L, Yang Z, Yang M, Zhang R, Kuai C, Cui X. Iridium-catalyzed direct C-H amidation of anilines with sulfonyl azides: easy access to 1,2-diaminobenzenes. Org Biomol Chem 2017; 15 (39) 8302-8307
  • 81 Zhu B, Cui X, Pi C. et al. Iridium(III)-catalyzed direct C-H sulfonamidation of 2-aryl-1,2,3-triazole N-oxides with sulfonyl azides. Adv Synth Catal 2016; 358 (02) 326-332
  • 82 Maraswami M, Chen G, Loh TP. Iridium(III)-catalyzed selective and mild C-H amidation of cyclic N-sulfonyl ketimines with organic azides. Adv Synth Catal 2018; 360 (03) 416-421
  • 83 Feng Y, Zhang Z, Fu Q. et al. Ir-catalyzed regiospecific mono-sulfamidation of arylquinazolinones. Chin Chem Lett 2020; 31 (01) 58-60
  • 84 Xiong H, Gu Y, Zhang S. et al. Iridium-catalyzed C-H amidation of s-tetrazines. Chem Commun (Camb) 2020; 56 (34) 4692-4695
  • 85 Xu L, Wang L, Feng Y, Li Y, Yang L, Cui X. Iridium(III)-catalyzed one-pot access to 1,2-disubstituted benzimidazoles starting from imidamides and sulfonyl azides. Org Lett 2017; 19 (16) 4343-4346
  • 86 Das D, Samanta R. Iridium(III)-catalyzed regiocontrolled direct amidation of isoquinolones and pyridones. Adv Synth Catal 2018; 360 (02) 379-384
  • 87 Jang YJ, Hwang SH, Choi TL. Iridium-catalyzed direct C-H amidation polymerization: step-growth polymerization by C-N bond formation via C-H activation to give fluorescent polysulfonamides. Angew Chem Int Ed Engl 2017; 56 (46) 14474-14478
  • 88 Hwang SH, Choi TL. Iridium-catalyzed direct C-H amidation producing multicolor fluorescent molecules emitting blue-to-red light and white light. Org Lett 2020; 22 (08) 2935-2940
  • 89 Musacchio AJ, Lainhart BC, Zhang X, Naguib SG, Sherwood TC, Knowles RR. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science 2017; 355 (6326) 727-730
  • 90 Zhu Q, Graff DE, Knowles RR. Intermolecular anti-markovnikov hydroamination of unactivated alkenes with sulfonamides enabled by proton-coupled electron transfer. J Am Chem Soc 2018; 140 (02) 741-747
  • 91 Roos CB, Demaerel J, Graff DE, Knowles RR. Enantioselective hydroamination of alkenes with sulfonamides enabled by proton-coupled electron transfer. J Am Chem Soc 2020; 142 (13) 5974-5979
  • 92 Lin A, Karrasch MJ, Yan Q. et al. Intermolecular Anti-Markovnikov Hydroamination of Alkenes with Sulfonamides, Sulfamides, and Sulfamates. ACS Catal 2024; 14 (17) 13098-13104
  • 93 Sihag P, Jeganmohan M. Iridium(III)-catalyzed intermolecular allylic C-H amidation of internal alkenes with sulfonamides. J Org Chem 2019; 84 (20) 13053-13064
  • 94 Vu HM, Yong JY, Chen FW, Li XQ, Shi GQ. Rhodium-catalyzed C(sp2)-H amidation of azine with sulfonamides. J Org Chem 2020; 85 (07) 4963-4972
  • 95 Kumar M, , Raziullah, Khan AA. et al. Cu(II)-mediated cross-dehydrogenative coupling of indolines with sulfonamides, carboxamides, and amines. J Org Chem 2019; 84 (21) 13624-13635
  • 96 Hajra AK, Ghosh P, Paul P, Kundu M, Das S. Copper(II)-mediated, site-selective C(sp(2))-H sulfonamidation of 1-naphthylamines. J Org Chem 2023; 88 (24) 16985-16996
  • 97 Zhong D, Wu D, Zhang Y. et al. Synthesis of sultams and cyclic N-sulfonyl ketimines via iron-catalyzed intramolecular aliphatic C-H amidation. Org Lett 2019; 21 (15) 5808-5812
  • 98 Song F, Park SH, Wu C, Strom AE. Iron-catalyzed oxidative alpha-amination of ketones with primary and secondary sulfonamides. J Org Chem 2023; 88 (05) 3353-3358
  • 99 Qian LL, Min XT, Hu YC. et al. Ruthenium(II)-catalyzed intermolecular annulation of alkenyl sulfonamides with alkynes: access to bicyclic sultams. Chem Commun (Camb) 2020; 56 (17) 2614-2617
  • 100 Hu Y, Lang K, Li C. et al. Enantioselective radical construction of 5-membered cyclic sulfonamides by metalloradical C-H amination. J Am Chem Soc 2019; 141 (45) 18160-18169
  • 101 Yang Y, Cho I, Qi X, Liu P, Arnold FH. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)-H bonds. Nat Chem 2019; 11 (11) 987-993
  • 102 Hayashi H, Uchida T. Nitrene transfer reactions for asymmetric C-H Amination: recent development. Eur J Org Chem 2020; 2020 (08) 909-916
  • 103 Dydio P, Key HM, Hayashi H, Clark DS, Hartwig JF. Chemoselective, enzymatic C-H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)-PIX cofactor. J Am Chem Soc 2017; 139 (05) 1750-1753
  • 104 Teh WP, Obenschain DC, Black BM, Michael FE. Catalytic metal-free allylic C-H amination of terpenoids. J Am Chem Soc 2020; 142 (39) 16716-16722
  • 105 Becker P, Duhamel T, Stein CJ, Reiher M, Muñiz K. Cooperative light-activated iodine and photoredox catalysis for the amination of C(sp3)-H bonds. Angew Chem Int Ed Engl 2017; 56 (27) 8004-8008
  • 106 Bosnidou AE, Muñiz K. Intermolecular radical C(sp3)-H amination under iodine catalysis. Angew Chem Int Ed Engl 2019; 58 (22) 7485-7489
  • 107 Duhamel T, Stein CJ, Martínez C. et al. Engineering molecular iodine catalysis for alkyl–nitrogen bond formation. ACS Catal 2018; 8 (05) 3918-3925
  • 108 Wu F, Ariyarathna JP, Kaur N. et al. Halogen-bond-induced consecutive C(sp3)-H aminations via hydrogen atom transfer relay strategy. Org Lett 2020; 22 (06) 2135-2140
  • 109 Yu X, Yang S, Zhang Y, Guo M, Yamamoto Y, Bao M. Intermolecular amidation of quinoline N-oxides with arylsulfonamides under metal-free conditions. Org Lett 2017; 19 (22) 6088-6091
  • 110 Luo Q, Mao R, Zhu Y, Wang Y. Photoredox-catalyzed generation of sulfamyl radicals: sulfonamidation of enol silyl ether with chlorosulfonamide. J Org Chem 2019; 84 (21) 13897-13907
  • 111 Sookezian A, Molander GA. Photoinduced vicinal 1,2-difunctionalization of olefins for the synthesis of alkyl sulfonamides. Org Lett 2023; 25 (06) 1014-1019
  • 112 Nguyen TB, Retailleau P. Redox-neutral access to sultams from 2-nitrochalcones and sulfur with complete atom economy. Org Lett 2017; 19 (14) 3879-3882
  • 113 Davies TQ, Tilby MJ, Skolc D, Hall A, Willis MC. Primary sulfonamide synthesis using the sulfinylamine reagent N-sulfinyl-O-(tert-butyl)hydroxylamine, t-BuONSO. Org Lett 2020; 22 (24) 9495-9499
  • 114 Andrews JA, Kalepu J, Palmer CF, Poole DL, Christensen KE, Willis MC. Photocatalytic carboxylate to sulfinamide switching delivers a divergent synthesis of sulfonamides and sulfonimidamides. J Am Chem Soc 2023; 145 (39) 21623-21629