CC BY-NC-ND 4.0 · Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery 2024; 43(04): e296-e307
DOI: 10.1055/s-0044-1796653
Review Article

Cellular Regulation and Oncogenesis of Primary Tumors in the Central Nervous System

Regulação celular e oncogênese de tumores primários no sistema nervoso central
1   Department of Medicine, Centro Universitário Campo Real, Guarapuava, PR, Brazil
,
2   Department of Medicine, Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Guarapuava, PR, Brazil
,
1   Department of Medicine, Centro Universitário Campo Real, Guarapuava, PR, Brazil
,
3   Department of Neurosurgery, Hospital São Vicente de Paulo, Guarapuava, PR, Brazil
,
2   Department of Medicine, Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Guarapuava, PR, Brazil
› Author Affiliations

Abstract

The World Health Organization's system for classifying and grading primary tumors of the Central Nervous System conjectures the clinical-biological course of the oncogenic process based on morphological, genetic, histological, and immunohistochemical parameters. These principles are fundamental for a progression in the classification of these tumors, to guarantee the promotion of a more precise diagnosis. In this sense, it is important to understand the process of oncotic cell formation, which is the result of mutations in intra and extracellular control pathways. In this way, genes that act to induce the cell cycle, under normal conditions, when mutated, can result in a dysregulation of the progress of the cycle, causing alterations in the control factors and, consequently, phenotypic transformations in the cell. Thus, to understand the role of genes in modulating primary tumors in the Central Nervous System, mutations in the genes most prevalently related to Gliomas, Meningiomas, and Medulloblastomas were addressed highlighting their influences on the development of these tumors.

Resumo

O sistema de classificação e graduação dos tumores primários do Sistema Nervoso Central da Organização Mundial da Saúde conjectura os cursos clínico-biológicos do processo oncogênico com base em parâmetros morfológicos, genéticos, histológicos e imuno-histoquímicos. Tais princípios são fundamentais para uma progressão na classificação desses tumores, a fim de garantir a promoção de um diagnóstico mais preciso. Nesse sentido, mostra-se relevante o entendimento do processo de formação de uma célula oncótica, resultado de mutações em vias de controle intra e extracelular. Dessa forma, genes que em condições normais atuam induzindo o ciclo celular, quando sofrem mutações, podem resultar em uma desregulação do progresso do ciclo, causando alterações nos fatores de controle e, consequentemente, transformações fenotípicas na célula. Assim, para o entendimento da atuação dos genes na modulação de tumores primários no Sistema Nervoso Central, foram abordadas as mutações nos genes mais prevalentes relacionados com Gliomas, Meningiomas e Meduloblastomas, destacando as suas influências no desenvolvimento desses tumores.



Publication History

Received: 28 February 2024

Accepted: 18 October 2024

Article published online:
11 December 2024

© 2024. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Alberts B, Johnson A, Lewis J. et al. Biologia Molecular da Célula. Artmed Editora; 2017
  • 2 Ward LS. Entendendo o Processo Molecular da Tumorigênese. Arq Bras Endocrinol Metabol 2002; 46 (04) 351-360
  • 3 WHO Classification of Tumors Editorial Board. . Central nervous system tumours. 2021. , vol 6. WHO Classification of Tumors series., 5 edn. International Agency for Research on Cancer, Lyon (France)
  • 4 Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J 2018; 285 (03) 416-431
  • 5 Paulovich AG, Toczyski DP, Hartwell LH. When checkpoints fail. Cell 1997; 88 (03) 315-321
  • 6 Livingston DM, Shivdasani R. Toward mechanism-based cancer care. JAMA 2001; 285 (05) 588-593
  • 7 Louis DN, Perry A, Wesseling P. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-oncol 2021; 23 (08) 1231-1251
  • 8 Menendez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nat Rev Cancer 2009; 9 (10) 724-737
  • 9 Lee SY, Park JH, Jeong S. et al. K120R mutation inactivates p53 by creating an aberrant splice site leading to nonsense-mediated mRNA decay. Oncogene 2019; 38 (10) 1597-1610
  • 10 Guo J, Zhang R, Yang Z, Duan Z, Yin D, Zhou Y. Biological Roles and Therapeutic Applications of IDH2 Mutations in Human Cancer. Front Oncol 2021; 11 (11) 644857
  • 11 Alzial G, Renoult O, Paris F, Gratas C, Clavreul A, Pecqueur C. Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma. Oncogene 2022; 41 (05) 613-621
  • 12 Silva REM. Mutação do gene da Isocitrato Desidrogenase 1 e a relação com o prognóstico e a sensibilidade ao tratamento com radioterapia em gliomas difusos. Dissertação. Minas Gerais: Escola de Medicina da Universidade Federal de Uberlândia; 2018
  • 13 Dang L, White DW, Gross S. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462 (7274) 739-744
  • 14 Figueroa ME, Abdel-Wahab O, Lu C. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18 (06) 553-567
  • 15 Chowdhury R, Yeoh KK, Tian YM. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 2011; 12 (05) 463-469
  • 16 Picca A, Berzero G, Di Stefano AL, Sanson M. The clinical use of IDH1 and IDH2 mutations in gliomas. Expert Rev Mol Diagn 2018; 18 (12) 1041-1051
  • 17 de Lemos CARC. Aspetos estruturais e funcionais do complexo telómero/telomerase. Dissertação. Porto: Escola de Farmácia da Universidade Fernando Pessoa (Portugal); 2015
  • 18 Sahm F, Schrimpf D, Olar A. et al. TERT Promoter Mutations and Risk of Recurrence in Meningioma. J Natl Cancer Inst 2015; 108 (05) djv377
  • 19 Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. Biochemistry (Mosc) 2010; 75 (13) 1563-1583
  • 20 Mendes GA, Ongaratti BR, Pereira-Lima JFS. Epidemiologia de uma série de tumores primários do sistema nervoso central. Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery. 2014; 33 (04) 279-283
  • 21 Gomes RN. Análise do perfil dos prostanoides e do seu papel no controle da migração celular em glioblastoma. Dissertação. São Paulo: Escola de Biomedicina da Universidade de São Paulo; 2016
  • 22 Pellerino A, Caccese M, Padovan M, Cerretti G, Lombardi G. Epidemiology, risk factors, and prognostic factors of gliomas. Clin Transl Imaging 2022; 10 (05) 467-475
  • 23 Torp SH, Solheim O, Skjulsvik AJ. The WHO 2021 Classification of Central Nervous System tumours: a practical update on what neurosurgeons need to know-a minireview. Acta Neurochir (Wien) 2022; 164 (09) 2453-2464
  • 24 Choi JY. Medulloblastoma: Current Perspectives and Recent Advances. Brain Tumor Res Treat 2023; 11 (01) 28-38
  • 25 Koelsche C, Sahm F, Capper D. et al. Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 2013; 126 (06) 907-915
  • 26 Guilleret I, Yan P, Grange F, Braunschweig R, Bosman FT, Benhattar J. Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer 2002; 101 (04) 335-341
  • 27 Spiegl-Kreinecker S, Lötsch D, Neumayer K. et al. TERT promoter mutations are associated with poor prognosis and cell immortalization in meningioma. Neuro-oncol 2018; 20 (12) 1584-1593
  • 28 Kool M, Jones DT, Jäger N. et al; ICGC PedBrain Tumor Project. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 2014; 25 (03) 393-405