CC BY-NC-ND 4.0 · Homeopathy
DOI: 10.1055/s-0044-1800966
Original Research Article

Performance of Pantaneira Breed Cows on Pasture Supplemented with Homeopathic Additives and Yeast

1   Departamento de Zootecnia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
,
2   Departamento de Zootecnia, Universidade Federal de Minas Gerais - Escola de Veterinária, Pampulha, Belo Horizonte, Minas Gerais, Brazil
,
3   Departamento de Zootecnia, Universidade Estadual de Mato Grosso do Sul, Camisão, Aquidauana, Mato Grosso do Sul, Brazil
,
3   Departamento de Zootecnia, Universidade Estadual de Mato Grosso do Sul, Camisão, Aquidauana, Mato Grosso do Sul, Brazil
,
4   Departamento de Ciência Agrárias, Universidade Federal a Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
,
5   Departamento de Ciências Biológicas, Universidade Federal de Mato Grosso do Sul, Serraria, Aquidauana, Mato Grosso do Sul, Brazil
,
3   Departamento de Zootecnia, Universidade Estadual de Mato Grosso do Sul, Camisão, Aquidauana, Mato Grosso do Sul, Brazil
,
3   Departamento de Zootecnia, Universidade Estadual de Mato Grosso do Sul, Camisão, Aquidauana, Mato Grosso do Sul, Brazil
› Author Affiliations

Funding None.

Abstract

Context

To improve the nutritional efficiency of ruminants and promote well-being in a natural and effective manner, the use of additives such as homeopathic products and yeast has been increasingly incorporated into diets, especially in grazing systems.

Objectives

To evaluate the effects of homeopathic products and yeast on the performance of Pantaneira cows maintained in rotational grazing on Mombaça grass in the Pantanal, Brazil.

Methods

Sixty cows were assigned to a completely randomized design with four treatments and 15 replicates. The treatments were: CTL: control (without additives); HOM: homeopathic (4 g/kg Entero 100, 4 g/kg Figotonus, and 4 g/kg Convert H); YEA: yeast (24 g/kg Saccharomyces cerevisiae); and HY: homeopathic + yeast (4 g/kg Entero 100, 4 g/kg Figotonus, 4 g/kg Convert H + 24 g/kg S. cerevisiae). The variables measured included forage and supplement intake, diet digestibility, weight gain, and feed conversion. Data were subjected to analysis of variance (ANOVA), followed by Tukey and Duncan tests, with a significance level set at 5%.

Key Results

Cows in the HY treatment group showed higher average daily gains and better feed conversion compared to the CTL treatment (p ≤ 0.05). They exhibited higher digestibility of dry matter, crude protein, neutral detergent fiber, acid detergent fiber, and ether extract, as well as higher levels of total digestible nutrients and digestible energy (p ≤ 0.05).

Conclusions

The inclusion of 4 g/kg Entero 100, 4 g/kg Figotonus, 4 g/kg Convert H, and 24 g/kg S. cerevisiae improved nutrient digestibility, body weight gain and feed conversion in Pantaneira cows.

Data Availability

The datasets generated and/or analyzed during the current study are not publicly available because it is unpublished original research. However, they are available from the corresponding author upon reasonable request.


Author Contributions

All authors contributed to the conception and design of the study. Material preparation, data collection and analysis were performed by Leandra da Silva Florentino, Mariana Santos, and Daniele Portela de Oliveira Torgan. The first draft of the manuscript was written by Leandra da Silva Florentino, Marcus Vinícius Morais de Oliveira, Evellyn Richelly Ferreira da Silva, Dalton Mendes de Oliveira, Dirce Ferreira Luz, and Fernando Miranda de Vargas Júnior, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.


Supplementary Material



Publication History

Received: 29 August 2024

Accepted: 28 October 2024

Article published online:
17 March 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 MAPA - Ministério da Agricultura e Pecuária. Mapa fortalece agropecuária pantaneira, 2023. Accessed April 15, 2024 at: https://www.gov.br/agricultura/pt-br/assuntos/noticias/mapa-fortalece-agropecuaria-pantaneira
  • 2 Gomes LSP, Braz TGS, Mourthé MHF. et al. Níveis de substituição de ureia por esterco bovino na adubação de capim-marandu. Soc Ciências Agrária Portugual 2018; 41: 914-923
  • 3 Carvalho EF, Nascimento VA, Dias M, Dias FJS. Óleos funcionais como aditivos na dieta de bovinos de corte. Encicl Biosf 2023; 20: 129-144
  • 4 Gemelli JL, Pereira ASC. Princípios e utilizações da homeopatia em bovinos de corte: Uma revisão. Rev Bras Hig Sanid Anim 2018; 12: 327-341
  • 5 Braccini GL, Casetta J, Silva SCC, Carniatto CHO, Santos VDR, Fiorillo CV. Aplicação da homeopatia na produção animal. Rev Valore 2019; 4: 310-323
  • 6 Guturu A, Nadgauda S, Rajopadhye BD. Antimicrobial activity of homoepathic medicine silicea terra: a narrative review. JNAO 2023; 14: 176-182
  • 7 Pasalkar AD, Kathade SA, Jadhav AB, Kunchiraman BN, Shinde CH. Study the anti-bacterial activity of homoeopathic medicines against Staphylococcus epidermidis in-vitro . Int J Health Sci Res 2019; 9: 49-53
  • 8 Arsène MMJ, Davares AKL, Andreevna SL. et al. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet World 2021; 14: 319-328
  • 9 Chaves BD, Brashears MM, Nightingale KK. Applications and safety considerations of Lactobacillus salivarius as a probiotic in animal and human health. J Appl Microbiol 2017; 123: 18-28
  • 10 Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 2017; 15: 83-95
  • 11 Dario Rafael OH, Luis Fernándo ZG, Abraham PT, Pedro Alberto VL, Guadalupe G-S, Pablo PJ. Production of chitosan-oligosaccharides by the chitin-hydrolytic system of Trichoderma harzianum and their antimicrobial and anticancer effects. Carbohydr Res 2019; 486: 107836
  • 12 Duarte I, Huynen MA. Contribution of lateral gene transfer to the evolution of the eukaryotic fungus Piromyces sp. E2: massive bacterial transfer of genes involved in carbohydrate metabolism. bioRχiv 2019; 514042: 1-18
  • 13 Mazza MCM, Mazza CA, Sereno JRB, Santos SAL, Mariante AS. Conservation of pantaneiro cattle in Brazil. Historical origin. Arch Zootec 1992; 41: 443-453
  • 14 Berchielli TT, Andrade P, Furlan CL. Avaliação de indicadores internos em ensaios de digestibilidade. Rev Bras Zootec 2000; 29: 830-833
  • 15 AOAC – Association of Official Analytical Chemists. Official Methods of Analysis. 15 ed.. Washington, DC: Association of Official Analytical Chemists; 1990
  • 16 Sniffen CJ, O'Connor JD, Van Soest PJ, Fox DG, Russell JB. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci 1992; 70: 3562-3577
  • 17 Hall MB. Neutral Detergent-Soluble Carbohydrates: Nutritional Relevance and Analysis—A Laboratory Manual. Gainesville, FL: University of Florida; 2000
  • 18 NRC - National Research Council. Nutrient Requirements of Dairy Cattle. 7th ed.. Washington, DC: National Academic Press; 2021
  • 19 R Foundation. The R Project for Statistical Computing. Vienna, Austria. 2019. Accessed April 17, 2024 at: https://www.R-project.org/
  • 20 Moorby JM, Fraser MD. Review: New feeds and new feeding systems in intensive and semi-intensive forage-fed ruminant livestock systems. Animal 2021; 15: 100297
  • 21 Araújo IMM, Difante GS, Euclides VPB, Montagner DB, Gomes RC. Animal performance with and without supplements in Mombaça Guinea grass pastures during dry season. J Agric Sci 2017; 9: 145-154
  • 22 INMET - Instituto Nacional de Meteorologia. Ministério da Agricultura e Pecuária. 2022. Accessed April 13, 2024 at: https://portal.inmet.gov.br/
  • 23 Kulik M, Tajchman K, Lipiec A. et al. The impact of rotational pasture management for farm-bred fallow deer (Dama dama) on fodder quality in the context of animal welfare. Agronomy (Basel) 2023; 13: 1155
  • 24 Oliveira CC, Alves FV, De Almeida RG, Gamarra EL, Villela SDJ, Martins PGMDA. Thermal comfort indices assessed in integrated production systems in the Brazilian savannah. Agrofor Syst 2019; 92: 1659-1672
  • 25 Armstrong DV. Heat stress interaction with shade and cooling. J Dairy Sci 1994; 77: 2044-2050
  • 26 Berman A, Horovitz T, Kaim M, Gacitua H. A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress. Int J Biometeorol 2016; 60: 1453-1462
  • 27 de Melo Costa CC, Maia ASC, Nascimento ST, Nascimento CCN, Neto MC, de França Carvalho Fonsêca V. Thermal balance of Nellore cattle. Int J Biometeorol 2018; 62: 723-731
  • 28 Peripolli E, Stafuzza NB, Machado MA. et al. Assessment of copy number variants in three Brazilian locally adapted cattle breeds using whole-genome re-sequencing data. Anim Genet 2023; 54: 254-270
  • 29 Lima JAC, Fernandes HJ, Silva AG, Rosa EP, Falcão YS. Homeopathic additives and virginiamycin® in grazing beef cattle. Rev Cienc Agron 2020; 51: 2018-2026
  • 30 da Silva ERF, de Oliveira MVM, Simões ARP. et al. Performance of Pantaneira breed cows in precision grazing system. Trop Anim Health Prod 2023; 55: 152
  • 31 Hess M, Paul SS, Puniya AK. et al. Anaerobic fungi: past, present, and future. Front Microbiol 2020; 11: 584893
  • 32 Ryder LS, Cruz-Mireles N, Molinari C, Eisermann I, Eseola AB, Talbot NJ. The appressorium at a glance. J Cell Sci 2022; 135: jcs259857
  • 33 Seppälä S, Wilken SE, Knop D, Solomon KV, O'Malley MA. The importance of obtaining enzymes from unconventional fungi for metabolic engineering and biomass degradation. Metab Eng 2017; 44: 45-59
  • 34 Hartinger T, Gresner N, Südekum KH. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. J Anim Sci Biotechnol 2018; 9: 33
  • 35 Amin AB, Mao S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: a review. Anim Nutr 2021; 7: 31-41
  • 36 Dias ALG, Freitas JA, Micai B, Azevedo RA, Greco LF, Santos JEP. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. J Dairy Sci 2018; 101: 201-221
  • 37 Zhao L, Xie Q, Etareri Evivie S. et al. Bifidobacterium dentium N8 with potential probiotic characteristics prevents LPS-induced intestinal barrier injury by alleviating the inflammatory response and regulating the tight junction in Caco-2 cell monolayers. Food Funct 2021; 12: 7171-7184
  • 38 Kraimi N, Dawkins M, Gebhardt-Henrich SG. et al. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: a review. Physiol Behav 2019; 210: 112658