Anästhesiol Intensivmed Notfallmed Schmerzther 1999; 34(2): 78-89
DOI: 10.1055/s-1999-170
ÜBERSICHT
Georg Thieme Verlag Stuttgart · New York

Das NO/cGMP-Signaltransduktionssystem: Ein zentraler Angriffspunkt von Anästhetika?

The NO/cGMP Sinal Transduction Pathway: A Central Target of Anaesthetics?P. H. Tonner, J. Scholz
  • Klinik für Anästhesiologie, Universitäts-Krankenhaus Eppendorf, Hamburg
Further Information

Publication History

Publication Date:
31 December 1999 (online)

Zusammenfassung.

Stickstoffmonoxid (NO) ist ein inter- und intrazellulärer Botenstoff, dessen Identität und physiologische Funktion erst innerhalb der letzten Jahre beschrieben worden ist. NO wird von vielen Geweben einschließlich neuronalem Gewebe durch das Enzym NO-Synthase synthetisiert. Bisher sind drei Isoformen der NO-Synthase beschrieben worden: die endotheliale NO-Synthase, die immunologische NO-Synthase sowie die neuronale NO-Synthase. In der Zelle bewirkt NO über eine Aktivierung der Guanylylcyclase einen Anstieg der Konzentration von zyklischem Guanosinmonophosphat (cGMP). Sowohl volatile, als auch intravenös applizierte Allgemeinanästhetika können den Metabolismus von NO beeinflussen. Darüber hinaus wurde demonstriert, daß Inhalationsanästhetika, intravenöse Anästhetika aber auch andere Substanzen, die einen hypnotischen Effekt hervorrufen wie zum Beispiel α2-Adrenozeptoragonisten, in ihrer hypnotisch-anästhetischen Wirkung durch eine Inhibition der NO-Synthase verstärkt werden. Verschiedene Interaktionen von Anästhetika auf den NO/cGMP-Metabolismus sind denkbar: auf Rezeptorebene, an der NO-Synthase sowie an der Guanylylcyclase. Gemeinsame Endstrecke des NO/cGMP-Signaltransduktionswegs ist die Konzentration von cGMP. Dieser second messenger reguliert die Aktivität von Proteinkinasen, Phosphodiesterasen und Ionenkanälen. Die Bedeutung dieser Strukturen für die hypnotisch-anästhetische Wirkung von Anästhetika ist bislang noch nicht ausreichend geklärt. Neuere Befunde an Knockout-Mäusen, die keine neuronale NO-Synthaseaktivität aufweisen sowie an chronisch mit NO-Synthaseinhibitoren behandelten Tieren deuten darauf hin, daß neben dem NO/cGMP-Metabolismus andere für die Wirkung von Anästhetika notwendige Signaltransduktionsmechanismen existieren.

Abstract

The identity and physiologic function of nitric oxide (NO) as an intra- and intercellular transmitter substance have only been recogniced during the last years. A variety of tissues including neuronal tissue is able to synthesize NO catalysed by the enzyme NO-synthase. Three isoforms of this enzyme have been described: the endothelial NO-synthase, the immunologic NO-synthase, and the neuronal NO-synthase. Within the cell NO binds to a haeme-moiety of the enzyme guanylyl cyclase thus increasing concentrations of cyclic guanosine monophosphate (cGMP). The NO metabolism is influenced by volatile as well as intravenous anaesthetics. The action of inhalational and intravenous anesthetics as well as other substances with hypnotic properties such as α2-adrenoceptor agonists has been demonstrated to be increased after disruption of NO-synthase activity by NO-synthase inhibitors. Different mechanisms of interaction of anaesthetics with the NO/cGMP signal transduction pathway are conceivable: at the receptor level, at the NO-synthase, or at the guanylyl cyclase. Common denominator of the NO/cGMP pathway is the control of cGMP. This second messenger regulates the activity of protein kinases, phosphodiesterases, and ion channels. However, the relevance of these structures for the hypnotic-anaesthetic action of general anaesthetics is currently unclear. Recent findings in mice deficient of neuronal NO-synthase activity and in animals chronically treated with NO-synthase inhibitors suggest that in addition to the NO/cGMP-metabolism other signal transduction pathways exist that are necessary for the action of general anaesthetics.

Literatur

  • 1 Krnjevic K. Cellular mechanisms of anesthesia.  Ann N Y Acad Sci. 1990;  625 1-16
  • 2 Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia.  Nature. 1994;  367 607-614
  • 3 Miller KW, Wood SC, Forman SA, Bugge B, Hill WAG, Abdji V. The nicotinic acetylcholine receptor in its membrane environment. Molecular and Cellular Mechanisms of Alcohol and Anesthetics. New York Academy of Sciences 1991
  • 4 Forman SA, Miller KW. Molecular sites of anesthetic action in postsynaptic nicotinic membranes.  Trends Pharmacol Sci. 1989;  10 447-452
  • 5 Johns R. Nitric oxide, cyclic guanosine monophosphate, and the anesthetic state.  Anesthesiology. 1996;  85 457-459
  • 6 Araki T, Kato H, Kogure K. Alteration of second messenger systems after transient cerebral ischemia in gerbils: Protective effect of pentobarbital and autoradiographic analysis.  Neurosci Lett. 1991;  130 57-60
  • 7 Kress HG, Tas PWL. Effects of volatile anaeshtetics on second messenger ca2+ in neurones and non-muscular cells.  Br J Anaesth. 1993;  71 47-58
  • 8 Kress HG. Effects of general anaesthetics on second messenger systems.  Eur J Anaesth. 1995;  12 83-97
  • 9 Lambert DG. Signal transduction: G proteins and second messengers.  Brit J Anaesth. 1993;  71 86-95
  • 10 Scholz J. Inositoltrisphosphat, ein neuer „Second Messenger” für positiv inotrope Wirkungen am Herzen?.  Klin Wschr. 1989;  67 271-279
  • 11 Moncada S. Nitric oxide gas: Mediator, modulator, and pathophysiologic entity.  J Lab Clin Med. 1992;  120 187-191
  • 12 Farrell AJ, Blake DR. Nitric oxide.  Ann Rheum Dis. 1996;  55 7-20
  • 13 Bredt DS, Snyder SH. Niric oxide: A novel neuronal messenger.  Neuron . 1992;  8 3-11
  • 14 Garthwaite J, Boulton CL. Nitric oxide signalling in the central nervous system.  Ann Rev Physiol. 1995;  57 683-706
  • 15 Johns RA. Nitric oxide and minimum alveolar concentration. TKO or knockout?.  Anesthesiology. 1995;  83 6-7
  • 16 Johns RA. Endothelium, anesthetics, and vascular control.  Anesthesiology. 1993;  79 1381-1391
  • 17 Terasako K, Nakamura K, Miyawaki I, Toda H, Kakuyama M, Mori K. Inhibitory effects of anesthetics on cyclic guanosine monophosphate (cGMP) accumulation in rat cerebellar slices.  Anesth Analg. 1994;  79 921-926
  • 18 Todd MM, Wu B, Warner DS, Mactabi M. The dose-related effects of nitric oxide synthase inhibition on cerebral blood flow during isoflurane and pentobarbital anesthesia.  Anesthesiology. 1994;  80 1128-1136
  • 19 Flynn NM, Buljubasic N, Bosnjak ZJ, Kampine JP. Isoflurane produces endothelium-independent relaxation in canine middle cerebral arteries.  Anesthesiology. 1992;  76 461-467
  • 20 Lischke V, Busse R, Hecker M. Volatile and intravenous anesthetics selectively attenuate the release of endothelium-derived hyperpolarizing factor elicited by bradykinin in the coronary microcirculation.  Naunyn-Schmiedeberg's Arch Pharmacol. 1995;  352 346-349
  • 21 Muldoon S, Van Dyke R, Hart J. Nitric oxide and anesthetics.  Curr Opin Anaesth. 1994;  7 87-90
  • 22 Rengasamy A, Spaeth J, Johns RA. Inhalational anesthetics inhibit glutamate stimulated cyclic GMP accumulation in rat cerebellum.  Anesthesiology. 1993;  79 -580
  • 23 Lischke V, Kessler P. Anästhetika und Stickstoffmonoxid.  Anaesthesist. 1997;  46 659-676
  • 24 Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysacharide.  Proc Natl Acad Sci USA. 1985;  82 7738-7742
  • 25 Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.  Nature. 1980;  288 373-376
  • 26 Arnold WP, Mittal CK, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3′,5′-cyclic monophosphate levels in various tissue preparations.  Proc Natl Acad Sci USA. 1997;  74 3203-3207
  • 27 Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA. Mechanism of vascular smooth muscle relaxtaion by organic nitrates, nitrites, nitroprusside of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates.  J Pharmacol Exp Ther. 1981;  218 739-749
  • 28 Palmer RM, Ferrige AG, Moncada S. Nitric oxide relase accounts for the biological activity of endothelium-derived relaxing factor.  Nature. 1987;  327 524-526
  • 29 Palmer R, Ashton D, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine.  Nature. 1988;  333 664-666
  • 30 Schroeder RA, Kuo PC. Nitric oxide: Physiology and pharmacology.  Anesth Analg. 1995;  81 1052-1059
  • 31 Marletta MA. Nitric oxide synthase structure and mechanism.  J Biol Chem. 1993;  268 12231-12234
  • 32 Schmidt HHHW, Pollock JS, Nakane M, Förstermann U, Murad F. Ca2+/calmodulin-regulated nitric oxide synthases.  Cell Calcium. 1992;  13 427-434
  • 33 Schmidt HHHW, M LS, Walter U. The nitric oxide and cGMP signal transduction system: Regulation and mechanism of action.  Biochim Biophys Acta. 1993;  1178 153-175
  • 34 Nathan C, Xie Q. Nitric oxide synthases: roles, tolls, and controls.  Cell. 1994;  78 915-918
  • 35 Feldman PL, Griffith OW, Stuehr DJ. The surprising life of nitric oxide.  Chem Engin News. 1993;  20 26-38
  • 36 Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology.  Pharmacol Rev. 1991;  43 109-142
  • 37 Moncada S, Higgs A. the L-arginine-nitric oxide pathway.  New Engl J Med. 1993;  329 2002-2012
  • 38 Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide.  Cell. 1994;  78 931-936
  • 39 Braughler JM, Mittal CK, Murad F. Effects of thiols, sugars, and proteins on nitric oxide activation of guanylate cyclase.  J Biol Chem. 1979;  354 12450-12454
  • 40 Murad F. Regulation of cytosolic guanylyl cyclase by nitric oxide: The NO-cyclic GMP signal transduction system.  Adv Pharmacol. 1994;  26 19-33
  • 41 Moncada S. The 1991 Ulf von Euler lecture.  Acta Physiol Scan. 1992;  145 201-207
  • 42 Radomski MW, Martin JF, Moncada S. Synthesis of nitric oxide by haemocytes of the American horseshoe crab.  Phil Trans R Soc London. 1991;  334 129-133
  • 43 Crowe MJ, Brown TJ, Bresnahan JC, Beattie MS. Distribution of NADPH-diaphorase reactivity in the spinal cord of metamorphosing and adult Xenopus laevis.  Brain Res Dev Brain Res. 1995;  86 155-166
  • 44 McDonald LJ, Murad F. Nitric oxide and cyclic GMP signaling.  Proc Soc Exp Biol Med. 1996;  211 1-6
  • 45 Southan GJ, Szabo C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms.  Biochem Pharmacol. 1996;  51 383-394
  • 46 Bower EA, Law AC. The effects of N-omega-nitro-L-arginine methyl ester, sodium nitroprusside and noradrenaline on venous return in the anaesthetized cat.  Br J Pharmacol. 1993;  108 933-940
  • 47 Lefebvre RA, Hasrat J, Gobert A. Influence of NG-nitro-L-arginine methyl ester on vagally induced gastric relaxation in the anaesthetized rat.  Br J Pharmacol. 1992;  105 315-320
  • 48 Vegh A, Papp JG, Szekeres L, Parratt JR. Prevention by an inhibitor of the L-arginine-nitric oxide pathway of the antiarrhythmic effects of bradykinin in anaesthetized dogs.  Brit J Pharmacol. 1993;  110 18-19
  • 49 Seligsohn EE, Bill A. Effects of NG-nitro-L-arginine methyl ester on the cardiovascular system of the anaesthetized rabbit and on the cardiovascular response to thyrotropin-releasing hormone.  Br J Pharmacol. 1993;  109 1219-1225
  • 50 Gardiner S, Compton AM, Kemp PA, Bennet T. Regional and cardiac hemodynamic effects of NG-nitro-L-arginine-methyl-ester in conscious, Long Evans rats.  Brit J Pharmacol. 1990;  101 632-639
  • 51 Moore PK, Babbedge RC, Wallace P, Gaffen ZA, Hart SL. 7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits antinociceptive activity in the mouse without increasing blood pressure.  Brit J Anaesth. 1993;  108 296-297
  • 52 Bredt DS, Glatt CE, Hwang PM, Fotuhi M, Dawson TM, Snyder SH. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase.   Neuron. 1991;  7 615-624
  • 53 Garthwaite J. Glutamate, nitric oxide and cell-cell signaling in the nervous system.  Trends Neurosci. 1991;  14 60-67
  • 54 Forstermann U, Gorsky LD, Pollock JS, Schmidt HHHW, Heller M, Murad F. Regional distribution of nitric oxide synthesizing enzyme(s) in rat brain.  Biochem Biophys Res Commun. 1990;  168 727-732
  • 55 Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide.  Nature. 1990;  347 768-770
  • 56 Lewicki JA, Brandwein HJ, Mittal CK, Arnold WP, Murad F. Properties of purified soluble guanylate cyclase activated by nitric oxide and sodium nitroprusside.  J Cyclic Nucl Res. 1982;  8 17-25
  • 57 Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messenger in brain.  Nature. 1988;  336 385-388
  • 58 Garthwaite J, Garthwaite G, Palmer RMJ, Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices.  Eur J Pharmacol. 1989;  172 413-416
  • 59 Bredt DS, Snyder SH. Nitric oxide mediates glutamate linked enhancement of cGMP levels in the cerebellum.  Proc Natl Acad Sci USA. 1989;  86 9030-9033
  • 60 Garthwaite J, Southam E, Anderton M. A kainate receptor linked to nitric oxide synthesis from arginine.  J Neurochem. 1989;  53 1952-1954
  • 61 Knowles RG, Palacios M, Palmer RMG, Moncada S. Formation of L-arginine in the central nervous system: a transducer mechanism for stimulation of the soluble guanylate cyclase.  Proc Natl Acad Sci USA. 1989;  86 5159-5162
  • 62 Bredt D, Snyder S. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme.  Proc Natl Acad Sci USA. 1990;  87 682-685
  • 63 Johns RA, Moscicki JC, DiFazio CA. Nitric oxide synthase inhibitor dose-dependently and reversibly reduces the threshold for halothane anesthesia. A role of nitric oxide in mediating consciousness?.  Anesthesiology. 1992;  77 779-784
  • 64 Dzoljic M, De Vries R. Nitric oxide synthase inhibition reduces wakefulness.  Neuropharmacology. 1994;  33 1505-1509
  • 65 Clark IA, Rockett KA, Cowden WB. Possible central role of nitric oxide in conditions clinically similar to cerebral malaria.  Lancet. 1992;  340 894-896
  • 66 Meller ST, Cummings CP, Traub RJ, Gebhardt GF. The role of nitric oxide in the development and maintenance of hyperalgesia produced by intraplanar injection of carrageenan in the rat.  Neuroscience. 1994;  60 367-374
  • 67 Meller ST, Gebhardt GF. Nitric oxide (NO) and nociceptive processing in the spinal cord.  Pain. 1993;  52 127-136
  • 68 Ferreira SH, G DID, Lorenzetti BB. The molecular mechanism of action of peripheral morphine analgesia: Stimulation of the cGMP system via nitric oxide release.  Eur J Pharmacol. 1990;  201 121-122
  • 69 Duarte IDG, Lorenzetti BB, Ferreira SH. Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway.  Eur J Pharmacol. 1990;  186 289
  • 70 Durieux ME. Muscarinic signalling in the central nervous system: Recent developments and anesthetic implications.  Anesthesiology. 1996;  84 173-189
  • 71 Kamei J, Iwamoto Y, Misawa M, Nagase H, Kasuya Y. Antinociceptive effect of L-arginine in diabetic mice.  Eur J Pharmacol. 1996;  254 113-117
  • 72 Adachi T, Kurata J, Nakano S, Murakawa M, Shichino T, Shirakami G, Shinomura T, Mori K. Nitric oxide synthase inhibitor does not reduce minimum alveolar concentration of halothane in rats.  Anesth Analg. 1994;  78 1154-1157
  • 73 Ichinose F, Huang PL, Zapol WM. Effects of targeted neuronal nitric oxide synthase gene disruption and nitro-L-arginine methylester on the threshold for isoflurane anesthesia.  Anesthesiology. 1995;  83 101-108
  • 74 Pajewski TN, DiFazio CA, Moscicki JC, Johns RA. Nitric oxide synthase inhibitors, 7-nitro indazole and nitro-G-L-arginine methyl ester, dose dependently reduce threshold for isoflurane anesthesia.  Anesthesiology. 1996;  85 1111-1119
  • 75 Tonner PH, Scholz J, Lamberz L, Schlamp N, Schulte am Esch J. Inhibition of nitric oxide synthase decreases anesthetic requirements of intravenous anesthetics in Xenopus laevis.  Anesthesiology. 1997;  87 1479-1485
  • 76 Motzko D, Glade U, Tober C, Flohr H. 7-Nitro indazole enhances methohexital anesthesia.  Brain Res. 1998;  788 353-355
  • 77 Blaise G, To Q, Parent M, Lagarde B, Asenjo F, Sauvé R. Does halothane interfere with the release, action, or stability of endothelium-derived relaxing factor/nitric oxide?.  Anesthesiology. 1994;  80 417-426
  • 78 Garthwaite J, Garthwaite G. Cellular origines of cyclic GMP responses to excitatory amino acid receptor agonists in rat cerebellum in vivo.  J Neurochem. 1987;  48 29-39
  • 79 Morgan WW, Bermudez J, Chang X. The relative potency of pentobarbital in suppressing the kainic acid- or the N-methyl-D-aspartic acid-induced enhancement of cGMP in cerebellar cells.  Eur J Pharmacol. 1991;  204 335-338
  • 80 Puil E, El-Beheiry H. Anaesthetic suppression of transmitter actions in neocortex.  Br J Pharmacol. 1990;  101 61-63
  • 81 Sugiyama K, Muteki T, Shimoji K. Halothane induced hyperpolarization and depression of postsynaptic potentials of guinea pig thalamic neurons.  Brian Res. 1992;  576 97-102
  • 82 Berg-Johnsen J, Langmoen IA. The effect of isoflurane on excitatory synaptic transmission in the rat hippocampus.  Acta Anaesthesiol Scand. 1992;  36 350-355
  • 83 Yamamura T, Stevens WC, Okamura A, Harada K, Kemmotsu O. Correlative study of behavior and synaptic events during halothane anesthesia in the lamprey.  Anesth Analg. 1993;  76 342-347
  • 84 Scheller MS, Zornow MH, Fleischer JE, Shearman GT, Greber TF. The noncompetitive N-methyl-D-aspartate receptor antagonist, MK-801 profoundly reduces volatile anesthetic requirements in rabbits.  Neuropharmacology. 1989;  28 677-681
  • 85 Mantz J, Cheramy A, Thierry AM, Glowinski J, Desmonts JM. Anesthetic properties of riluzole (54274 RP) a new inhibitor of glutamate neurotransmission.  Anesthesiology. 1992;  76 844-848
  • 86 McFarlane C, Warner DS, Todd MM, Nordholm L. AMPA receptor competitive antagonism reduces halothane MAC in rats.  Anesthesiology. 1992;  77 1165-1170
  • 87 Nei K, Matsuyama S, Shuntoh H, Tanaka C. NMDA receptor activation induces glutamate release through nitric oxide synthesis in guinea pig dentate gyrus.  Brain Res. 1996;  728 105-110
  • 88 Prast H, Lamberti C, Fischer H, Tran MH, Philippu A. Nitric oxide influences the release of histamine and glutamate in the rat hypothalamus.  Naunyn-Schmiedeberg's Arch Pharmacol. 1996;  354 731-735
  • 89 Sistiaga A, Miras-Portugal MT, Sanchez-Prieto J. Modulation of glutamate release by a nitric oxide/cyclic GMP-dependent pathway.  Eur J Pharmacol. 1997;  321 247-257
  • 90 Muldoon SM, Hart JL, Bowen KA, Freas W. Attenuation of endothelium-mediated vasodilation by halothane.  Anesthesiology. 1988;  68 31-37
  • 91 Uggeri MJ, Proctor GJ, Johns RA. Halothane, enflurane, and isoflurane attenuate both receptor- and non-receptor-mediated EDRF production in rat thoracic aorta.  Anesthesiology. 1992;  76 1012-1017
  • 92 Tobin JR, Martin LD, Breslow MJ, Traystman RJ. Selective anesthetic inhibition of brain nitric oxide synthase.  Anesthesiology. 1994;  81 1264-1269
  • 93 Nakamura K, Terasako K, Toda H, Miyawaki I, Kakuyama M, Nisetiwaoa M, Hatano Y, Mori K. Mechanisms of inhibition of endothelium dependent relaxations by halothane, isoflurane and sevoflurane.  Jan J Anaesth. 1994;  41 340-346
  • 94 Zuo Z, Johns RA. Halothane, enflurane, and isoflurane do not affect the basal or agonist-stimulted of partially isolated soluble and particulate guanylyl cyclases of rat brain.  Anesthesiology. 1995;  83 395-404
  • 95 Eskinder H, Hillard CJ, Flynn. Role of guanylate cyclase-cGMP systems in halothane-induced vasodilation in canine cerebral arteries.  Anesthesiology. 1992;  77 482-487
  • 96 Nakamura K, Hatano Y, Toda H. Halothane induced relaxation of vascular smooth muscle: a possible contribution of increased cyclic GMP formation.  Jpn J Pharmacol. 1991;  55 165-168
  • 97 Rengasamy A, Ravichandran LV, Reikersdorfer CG, Johns RA. Inhalational anesthetics do not alter nitric oxide synthase activity.  J Pharmacol Exp Ther. 1995;  273 599-604
  • 98 Tonner PH, Scholz J, Suppé E, Schulte am Esch J. L-Nitroargininmethylester (L-NAME), ein Stickoxidsynthasehemmer, erhöht die anästhetische Potenz von Etomidat. Anästhesiol Intensivmed Notfallmed Schmerzther 1999 im Druck
  • 99 Galley HF, Webster NR. Brain nitric oxide synthase activity is decreased by intravenous anesthetics.  Anesth Analg. 1996;  83 591-594
  • 100 Thomson A, West D, Lodge D. An N-methylaspartate receptor-mediated synapse in rat cerbral cortex: A site of action of ketamine?.  Nature. 1985;  313 479-481
  • 101 Gonzales JM, Loeb AL, Reichard PS, Irvine S. Ketamine inhibits glutamate-, N-methyl-D-aspartate-, and quisqualate-stimulated cGMP production in cultured cerebral neurons.  Anesthesiology. 1995;  82 205-213
  • 102 Tonner PH, Poppers DM, Miller KW. The general anesthetic potency of propofol and its dependence on hydrostatic pressure.  Anesthesiology. 1992;  77 926-931
  • 103 Mantz J, Cordier J, Giaume C. Effects of general anesthetics on intercellular communications mediated by gap junctions between astrocytes in primary culture.  Anesthesiology. 1993;  78 892-901
  • 104 Friederich P, Urban BW. Etomidat unterdrückt einen neuronalen Kaliumstrom des Menschen.  Anaesthesist. 1997;  46 434-436
  • 105 Mascia MP, Machu TK, Harris RA. Enhancement of homomeric glycine receptor function by long-chain alcohols and anaesthetics.  Br J Pharmacol. 1996;  119 1331-1336
  • 106 Durieux ME. Halothane inhibits signaling through m1 muscarinic receptors expressed in Xenopus oocytes.  Anesthesiology. 1995;  82 174-182
  • 107 Fibiger HC, Damsma G, Day JC. Behavioral pharmacology and biochemistry of central cholinergic neurotransmission.  Adv Exp Med Biol. 1995;  295 399-414
  • 108 Nakahiro M, Yeh JZ, Brunner E, Narahashi T. General anesthetics modulate GABA receptor channel complex in rat dorsal root ganglion neurons.  FASEB J. 1989;  3 1850-1854
  • 109 Jones MV, Brooks PA, Harrison NL. Enhancement of gamma-aminobutyric acid-activated C1 currents in cultured rat hippocampal neurones by three volatile anesthetics.  J Physiol. 1992;  449 279-293
  • 110 Vulliemoz Y, Shen H, Virag L. Alpha-2 adrenoceptor agonists decrease cyclic guanosine 3',5'-monophosphate in the mouse brain.  Anesthesiology. 1996;  85 544-550
  • 111 Maze M, Tranquilli W. Alpha-2 adrenoceptor agonists: defining the role in clinical anesthesia.  Anesthesiology. 1991;  74 581-605
  • 112 Tonner PH, Scholz J. Clinical perspectives of alpha2-adrenoceptor agonists.  Curr Opin Anaesth. 1996;  9 471-480
  • 113 Savola MK, Woodley SJ, Maze M, Kendig JJ. Isoflurane and an alpha 2-adrenoceptor agonist suppress nociceptive neurotransmission in neonatal rat spinal cord.  Anesthesiology. 1991;  75 489-498
  • 114 Aantaa R, Marjamaeki A, Scheinin M. Molecular pharmacology of alpha 2-adrenoceptor subtypes.  Ann Med. 1995;  27 439-449
  • 115 Unnerstall JR, Kopajtac TA, Kuhar MJ. Distribution of alpha2-agonist binding sites in the rat and human CNS: Analysis of some functional anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents.  Brain Res. 1984;  319 69-101
  • 116 Unnerstall JR, Fernandez I, Orensanz LM. The alpha-adrenergic receptor: radiohistochemical analysis of functional characteristics and biochemical differences.  Pharmacol, Biochem Behav. 1985;  22 859-874
  • 117 Starke K. Presynaptic alpha autoreceptors.  Rev Physiol Biochem Pharmacol. 1987;  107 74-146
  • 118 Segal IS, Vickery RG, Walton JK, Doze VA, Maze M. Dexmedetomidine diminishes halothane anesthetic requirements in rats through a postsynaptic alpha 2 adrenergic receptor.  Anesthesiology. 1988;  69 818-823
  • 119 Mori-Okamoto J, Namii Y, Tatsuno J. Subtypes of adrenergic receptors and intracellular mechanisms involved in modulatory effects of noradrenaline on glutamate.  Brain Res. 1991;  539 67-75
  • 120 Ruffolo RR Jr, Hieble JP. Alpha-adrenoceptors.  Pharmacol Ther. 1994;  61 1-64
  • 121 Vulliemoz Y, Verosky M. Effect of clonidine on myocardial cyclic GMP content in the mouse-activation of central and peripheral alpha adrenoceptors.  J Pharmacol Exp Ther. 1989;  251 884-887
  • 122 Vickery RG, Sheridan BC, Segal IS, Maze M. Anesthetic and hemodynamic effects of the stereoisomers of medetomidine, an alpha 2-adrenergic agonist, in halothane-anesthetized dogs.  Anesth Analg. 1988;  67 611-615
  • 123 Doze VA, Chen BX, Maze M. Dexmedetomidine produces a hypnotic-anesthetic action in rats via activation of central alpha-2 adrenoceptors.  Anesthesiology. 1989;  71 75-79
  • 124 Tonner PH, Scholz J, Koch C, Schulte am Esch J. The anesthetic effect of dexmedetomidine does not adhere to the Meyer-Overton rule but is reversible by hydrostatic pressure.  Anesth Analg. 1997;  84 618-623
  • 125 Tonner PH, Scholz J, Schlamp N, Schulte am Esch J. Inhibition of nitric oxide metabolism enhances hypnotic-anesthetic action of the alpha2-adrenoceptor agonist dexmedetomidine in vivo. J Neurosurg Anesth 1999: 37-41
  • 126 Nakane M, Murad F. Cloning of guanylyl cyclase isoforms.  Adv Pharmacol. 1994;  26 7-18
  • 127 Kamisaki Y, Saheki S, Nakane M, Palmieri J, Kuno T, Chang B, Waldman SA, Murad F. Soluble guanylate cyclase from rat lung exists as a heterodimer.  J Biol Chem. 1986;  261 7236-7241
  • 128 Lincoln TM, Cornwell TL. Intracellular cyclic GMP receptor proteins.  FASEB J. 1993;  7 328-338
  • 129 Sonnenberg WK, Beavo J. Cyclic GMP and regulation of cyclic nucleotide hydrolase.  Adv Pharmacol. 1994;  26 87-114
  • 130 Rapaport R, Murad F. Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle. Role of cyclic GMP.  J Cyclic Nucl Prot Phosphoryl Res. 1983;  9 281-296
  • 131 Nahrwold ML, Lust WD, Passonneau JV. Halothane-induced alterations of cyclic nucleotide concentrations in the three regions of the mouse nervous system.  Anesthesiology. 1977;  47 423-427
  • 132 Kant GJ, Muller TW, Lenox RH, Meyerhoff JL. In vivo effects of pentobarbital and halothane anesthesia on levels of adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in rat brain regions and pituitary.  Biochem Pharmacol. 1980;  29 1891-1896
  • 133 Triner L, Vulliemoz Y, Verosky M, Alpert M. Halothane effect on cGMP and control of motor activity in mouse cerebellum.  Anesthesiology. 1981;  54 193-198
  • 134 Vulliemoz Y, Verosky M, Alpert M, Triner L. Effects of enflurane on cerebellar cGMP and on motor activity in the mouse.  Br J Anaesth. 1983;  55 79-84
  • 135 Toda H, Nakamura K, Hatano Y, Nishiwada M, Kakuyama M, Mori K. Halothane and isoflurane inhibit endothelium-dependent relaxation elicited by acetylcholine.  Anesth Analg. 1992;  75 198-203
  • 136 Yoshida K, Okabe E. Selective impairment of endothelium-dependent relaxation by sevoflurane: oxygen free radicals participation.  Anesthesiology. 1992;  76 440-447
  • 137 Gerkens JF. Barbiturate inhibition of endothelium-dependent dilatation of blood- and Krebs-perfused rat tail arteries.  Eur J Pharmacol. 1987;  134 293-301
  • 138 Terasako K, Nakamura K, Toda H, Kakuyama M, Hasano Y, Mori K. Barbiturates inhibit endothelium-dependent and independent relaxations mediated by cyclic GMP.  Anesth Analg. 1994;  78 823-830
  • 139 Johns RA. Local anesthetics inhibit endothelium-dependent vasodilation.  Anesthesiology. 1989;  70 805-811
  • 140 Moncada S, Palmer RMJ, Higgs EA. Biosynthesis of nitric oxide from L-arginine: A pathway for the regulation of cell function and communication.  Biochemical Pharmacology. 1989;  38 1709-1715
  • 141 De Sarro G, Di Paola ED, De Sarro A, Vidal MJ. L-arginine potentiates excitatory amino acid-induced seizures elicited in the deep prepiriform cortex.  Eur J Pharmacol. 1993;  230 151-158
  • 142 Tonner PH, Scholz J, Suppé E, Krause T, Schulte am Esch J. Phosphodiesterase inhibition reveres the effect of L-NAME on the anesthetic action of thiopental.  Anesthesiology. 1998;  89 -179
  • 143 Nicholls EA, Louie GL, Prokocimer PG, Maze M. Halothane anesthetic requirements are not affected by aminophylline treatment in rats and dogs.  Anesthesiology. 1986;  65 637-641
  • 144 Ichinose F, Mi W, Miyazaki M, Onouchi T, Goto T, Morita S. Lack of correlation between the reduction of sevoflurane MAC and the cerebellar cyclic GMP concentrations in mice treated with 7-nitroindazole.  Anesthesiology. 1998;  89 143-148
  • 145 Adachi T, Shinomura T, Nakao S, Kurata J, Murakawa M, Shichino T, Seo N, Mori K. Chronic treatment with nitric oxide synthase (NOS) inhibitor profoundly reduces cerebellar NOS activity and cyclic guanosine monophsophate but does not modify minimum alveolbar concentration.  Anesth Analg. 1995;  81 862-865

Dr. Priv.-Doz. Peter H. Tonner

Klinik für Anästhesiologie | Universitäts-Krankenhaus Eppendorf

Martinistraße 52

D-20246 Hamburg

Email: tonner@uke.uni-hamburg.de