Int J Sports Med 1999; 20(8): 522-526
DOI: 10.1055/s-1999-8838
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart ·New York

Muscle Structure with Low- and High-Fat Diets in Well-Trained Male Runners

 H. Hoppeler1 ,  R. Billeter 1 ,  P. J. Horvath3 ,  J. J. Leddy4 ,  D. R. Pendergast2
  • 1 Department of Anatomy, University of Bern, Bern, Switzerland
  • 2 Department of Physiology, University at Buffalo, Buffalo, NY, USA
  • 3 Department of Physical Therapy, Exercise and Nutritional Sciences, University at Buffalo, Buffalo, NY, USA
  • 4 Sports Medicine Institute, University at Buffalo, Buffalo, NY, USA
Further Information

Publication History

Publication Date:
31 December 1999 (online)

Endurance capacity, maximal oxygen uptake capacity (V˙O2max) and quantitative muscle ultrastructural composition was analyzed in 7 well-trained male runners (mean age 37.1 years, mean V˙O2max 60 ml/min/kg) after a one month period of a low-fat diet (dietary fat intake 18.4 % and a similar period of a high-fat diet (dietary fat intake 40.6 %). Between these two interventional periods a washout period of one month was interspersed in which the nutritional fat content was approx. 32 %; close to the average American Diet. During all three periods protein content of the nutrition was kept nearly constant at 15 %. After the high-fat diet time to exhaustion in the endurance test increased significantly by 21 % while V˙O2max remained unchanged. Muscle mitochondrial volume density remained unchanged while the intramyocellular fat content increased by 60 %. Due to large interindividual differences in this variable this difference did not become statistically significant. While some 20 % of the mitochondria are located in a subsarcolemmal location, only 10 % of the lipid stores are associated with these mitochondria. Less than 2 % of the mitochondrial outer surface are in contact with lipid droplets whereas 25 - 35 % of the lipid surface is in contact with mitochondria. None of these variables is significantly altered after a high-fat diet. It is concluded that the change in endurance capacity of the subjects cannot be explained based on the structural changes observed in skeletal muscle tissue. This may be related to methodological problems associated with the determination of intramyocellular fat content.

References

  • 1 Bergström J, Hermannsen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance.  Acta Physiol Scand. 1967;  71 140-150
  • 2 Billeter R, Weber H, Lutz H, Howald H, Eppenberger H M, Jenni E. Myosin types in human skeletal muscle fibers.  Histochemistry. 1980;  65 249-259
  • 3 Boesch C, Kreis R, Howald H, Matter S, Billeter R, Essen-Gustavsson B, Hoppeler H. Validation of intra-myocellular lipid (IMCL) levels determined by 1H-MRS, using morphometry and chemical analysis in human biopsy samples (abstract). Sydney; Proceedings of the international Society of Magnetic Resonance in Medicine ISMRM, 6th Annual Meeting. 1998: 1785
  • 4 Boesch C, Slotboom H, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy.  Magn Res Med. 1997;  37 484-493
  • 5 Christensen E H, Hansen O. Arbeitsfähigkeit und Ernährung.  Skand Arch Physiol. 1939;  81 160-175
  • 6 Coyle E F, Coggan A R, Hemmert M K, Ivy J L. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate.  J Appl Physiol. 1986;  61 165-172
  • 7 Galbo H, Holst J J, Christensen N J. The effect of different diets and of insulin on the hormonal response to prolonged exercise.  Acta Physiol Scand. 1979;  107 19-32
  • 8 Gollnick P D, Piehl K, Saubert C W, Armstrong R B, Saltin B. Diet, exercise, and glycogen changes in human muscle fibers.  J Appl Physiol. 1972;  33 421-425
  • 9 Helge J W, Kiens B. Muscle enzyme activity in humans: Role of substrate availability and training.  Am J Physiol. 1997;  272 1624
  • 10 Helge J W, Richter E A, Kiens B. Interaction of training and diet on metabolism and endurance during exercise in man.  J Physiol. 1996;  492 293-306
  • 11 Helge J W, Wulff B, Kiens B. Impact of a fat-rich diet on endurance performance in man. Role of the dietary period.  Med Sci Sports Exerc. 1998;  30 456-461
  • 12 Holloszy J O, Coyle E F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences.  J Appl Physiol. 1984;  56 831-838
  • 13 Hoppeler H. Exercise-induced ultrastructural changes in skeletal muscles.  Int J Sports Med. 1986;  7 187-204
  • 14 Hoppeler H, Howald H, Conley K E, Lindstedt S, Claassen H, Vock P, Weibel E R. Endurance training in humans: Aerobic capacity and structure of skeletal muscle.  J Appl Physiol. 1985;  59 320-327
  • 15 Jeukendrup A E, Saris W HM, Wagenmakers A JM. Fat metabolism during exercise: A review. Part I: Fatty acid mobilization and muscle metabolism.  Int J Sports Med. 1998;  19 231-244
  • 16 Jeukendrup A E, Saris W HM, Wagenmakers A JM. Fat metabolism during exercise: A review. Part II: Regulation of metabolism and the effects of training.  Int J Sports Med. 1998;  19 293-302
  • 17 Jeukendrup A E, Saris W HM, Wagenmakers A JM. Fat metabolism during exercise: A review. Part III: Effects of nutritional interventions.  Int J Sports Med. 1998;  19 371-379
  • 18 Kayar S R, Hoppeler H, Howald H, Claassen H, Oberholzer F. Acute effects of endurance exercise on mitochondrial distribution and skeletal muscle morphology.  Eur J Appl Physiol. 1986;  54 578-584
  • 19 Kiens B, Essen-Gustavsson B, Christensen N J, Saltin B. Skeletal muscle substrate utilization during submaximal exercise in man: Effect of endurance training.  J Physiol. 1993;  469 459-478
  • 20 Lambert E V, Speechly D P, Dennis S C, Noakes T D. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet.  Eur J Appl Physiol. 1994;  69 287-293
  • 21 Leddy J, Horvath P, Rowland J, Pendergast D. Effect of a high or a low fat diet on cardiovascular risk factors in male and female runners.  Med Sci Sports Exerc. 1997;  29 17-25
  • 22 Muoio D M, Leddy J J, Horvath P J, Awad A B, Pendergast D R. Effect of dietary fat on metabolic adjustments to maximal VO2 and endurance in runners.  Med Sci Sports Exerc. 1994;  26 81-88
  • 23 Oberholzer F, Claassen H, Moesch H, Howald H. Ultrastrukturelle, biochemische und energetische Analyse einer extremen Dauerleistung (100 km-Lauf).  Schweiz Zeitschr Sportmed. 1976;  24 71-98
  • 24 Phinney S D, Bistrian B R, Evans W J, Gervino E, Blackburn G L. The human metabolic response to chronic ketosis without caloric restriction: Preservation of submaximal exercise capability with reduced carbohydrate oxidation.  Metabolism. 1983;  32 769-777
  • 25 Roedde S, MacDougall J, Sutton J, Green H. Supercompensation of muscle glycogen in trained and untrained subjects.  Can J Appl Sport Sci. 1986;  11 42-46
  • 26 Venkatraman J T, Rowland J A, Denardin E, Horvath P J, Pendergast D. Influence of the level of dietary lipid intake and maximal exercise on the immune status in runners.  Med Sci Sports Exerc. 1997;  29 333-344
  • 27 Vock R, Hoppeler H, Claassen H, Wu D XY, Billeter R, Weber J-M, Taylor C R, Weibel E R. Design of the oxygen and substrate pathways. VI. Structural basis of intracellular substrate supply to mitochondria in muscle cells.  J Exp Biol. 1996;  199 1689-1697
  • 28 Vock R, Weibel E R, Hoppeler H, Ordway G, Weber J-M, Taylor C R. Design of the oxygen and substrate pathways. V. Structural basis of vascular substrate supply to muscle cells.  J Exp Biol. 1996;  199 1675-1688
  • 29 Weibel E R. Stereological Methods, Vol I: Practical Methods for Biological Morphometry. London, New York, Toronto; Academic Press 1979
  • 30 Weibel E R, Taylor C R, Weber J-M, Vock R, Roberts T J, Hoppeler H. Design of the oxygen and substrate pathways. VII. Different structural limits for oxygen and substrate supply to muscle mitochondria.  J Exp Biol. 1996;  199 1699-1709

H. Hoppeler

Department of Anatomy

Bühlstraße 26

CH-3000 Bern 9

Switzerland

Phone: +41 (31) 6314637

Fax: +41 (31) 6313807

Email: hoppeler@ana.unibe.ch