Subscribe to RSS
DOI: 10.1055/s-2000-10573
Georg Thieme Verlag Stuttgart · New York
Membranpotenzial-Depolarisation im Epithel des Schweineziliarkörpers durch Stickstoffmonoxid1, 2
Membrane potential depolarization in the porcine ciliary epithelium evoked by nitric oxidePublication History
Publication Date:
31 December 2000 (online)
Zusammenfassung
Hintergrund Die vorliegende Studie wurde durchgeführt, um zu evaluieren, ob im isolierten Schweineziliarkörper der intrazelluläre Signalübertragungsweg Stickstoffmonoxid (NO) - Guanylatzyklase (GC) - 3′,5′-zyklisches Guanosinmonophosphat (cGMP) das Membranpotenzial des Ziliarkörperepithels verändern kann.
Methodik Änderungen im Membranpotenzial, ausgelöst durch den NO-Donor Natrium-Nitroprussid (SNP; 100 μM; n=5) oder durch das membranpermeable cGMP-Analogon 8-para-Chlorophenylthioguanosin-3′,5′-zyklisches Monophosphat (8-pCPT-cGMP; 100 μM; n=5) wurden mittels intrazellulärer Mikroelektroden in An- oder Abwesenheit des GC-Hemmers 1-H-(1,2,4)oxadiazole-(4,3-a)quinoxalin-1-one (ODQ; 10 μM; n=4) gemessen.
Ergebnisse SNP und Rp-8-pCPT-cGMP bewirkten beide eine Membrandepolarisation (7,7 ± 1,8 mV und 13,1 ± 1,3 mV, MW ± SEM). SNP-induzierte Depolarisationen wurden durch ODQ gehemmt (p < 0,01), wogegen diejenigen ausgelöst durch 8-pCPT-cGMP nicht verändert wurden (p > 0,2).
Schlussfolgerung Stickstoffmonoxid führt im isolierten Schweineziliarkörper zu einer Depolarisation des Membranpotenzials. Die Weiterleitung des Signals führt über die Aktivierung der GC. Stickstoffmonoxid könnte somit als Regulator der Ionenpermeabilität der Zellmembranen des Ziliarkörpers eine Rolle spielen.
Background The present work studies if in porcine ciliary body epithelium the intracellular signal transduction pathway nitric oxide (NO) - guanylate cyclase (GC) - 3′,5′-cyclic guanosinemonophosphate (cGMP) can change the membrane potential of the epithelium of the ciliary body.
Material and Methods Recordings of membrane potentials were done by means of intracellular microelectrodes in the presence of the NO donor Sodium Nitroprusside (SNP; 100 μM; n=5) or the membrane permeable cGMP analogue 8-para-chlorophenyl-thioguanosine-3′,5′ cyclic monophosphate (8-pCPT-cGMP; 100 μM; n=5). To test whether the GC is involved in this process, recordings were repeated in both groups in presence or in absence of the GC inhibitor 1-H-(1,2,4)oxadiazole-(4,3-a)quinoxalin-1-one (ODQ; 10 μM; n=4).
Results SNP and 8-pCPT-cGMP both induced significant membrane potential depolarizations (7.7 ± 1.8 mV and 13.1 ± 1.3 mV, mean ± SEM). Membrane depolarizations induced by SNP were significantly inhibited by ODQ (p < 0.01), whereas depolarizations induced by 8-pCPT-cGMP were not altered by the presence of ODQ (p > 0.2).
Conclusions Nitric oxide induces depolarizations of the membrane potential in the isolated porcine ciliary body. This process is transduced by activation of the GC. We conclude that nitric oxide might be involved in the regulation of permeability of the cellular membrane for ions in the ciliary body.
Schlüsselwörter
Stickstoffmonoxid - Ziliarkörperepithel - cGMP - Kammerwasser - Glaukom - Intraokulardruck
Key words
Nitric oxide - ciliary body epithelium - cGMP - aqueous humour - glaucoma -intraocular pressure
Literatur
-
01 Krupin T, Civan M M. Physiologic basis of aqueous humor formation. In: Ritch R, Shields MB, Krupin T (Hrsg).
The Glaucomas, Basic Sciences. 2nd ed. Mosby, St. Louis; 1996: 251-280 - 02 Jacob T J, Civan M M. The role of ion channels in aqueous humor formation. Am J Physiol. 1996; 271 C703-C720
- 03 Brown J F, Keates A C, Hanson P J, Whittle B J. Nitric oxide generators and cGMP stimulate mucus secretion by rat gastric mucosal cells. Am J Physiol. 1993; 265 G418-G422
- 04 Tamai H, Gaginella T S. Direct evidence for nitric oxide stimulation of electrolyte secretion in the rat colon. Free Radic Res Commun. 1993; 19 229-239
- 05 Takemura H, Tamaoki J, Tagaya E, Chiyotani A, Konno K. Isoproterenol increases Cl diffusion potential difference of rabbit trachea through nitric oxide generation. J Pharmacol Exp Ther. 1995; 274 584-588
- 06 Gabbai F B, Thomson S C, Peterson O, Wead L, Malvey K, Blantz R C. Glomerular and tubular interactions between renal adrenergic activity and nitric oxide. Am J Physiol. 1995; 268 F1004-F1008
- 07 Meyer P, Champion C, Schlötzer-Schrehardt U, Flammer J, Haefliger I O. Localization of nitric oxide synthase isoforms in porcine ocular tissues. Cur Eye Res. 1999; 18 375-380
- 08 Liu R, Flammer J, Haefliger I O. Isoproterenol, forskolin, and cAMP-induced nitric oxide production in pig ciliary processes. Invest Ophthalmol Vis Sci. 1999; 40 1833-1837
- 09 Liu R, Flammer J, Luscher T F, Haefliger I O. beta-Adrenergic agonist-induced nitrite production in isolated pig ciliary processes. Graefes Arch Clin Exp Ophthalmol. 1998; 236 613-616
- 10 Krupin T, Weiss A, Becker B, Holmberg N, Fritz C. Increased intraocular pressure following topical azide or nitroprusside. Invest Ophthalmol Vis Sci. 1977; 16 1002-1007