Semin Thromb Hemost 2000; 26(5): 463-478
DOI: 10.1055/s-2000-13202
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Endothelium and Thrombosis

Peter L. Gross1 , William C. Aird1,2
  • 1Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
  • 2Department of Molecular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
31. Dezember 2000 (online)

ABSTRACT

Thrombosis reflects an imbalance between procoagulant and anticoagulant mechanisms. In some cases, thrombotic lesions are precipitated by gross changes in blood flow, vascular wall integrity, or systemic levels of coagulation factors. In other cases, thrombosis is induced by functional changes within the endothelium. Endothelial cells express a wide variety of factors that contribute to hemostasis, including procoagulants, anticoagulants, cell adhesion molecules, vasomotor substances, and cell survival signals. Because the endothelium displays a remarkable diversity of structure and function, the relative contribution of any one of these factors to the hemostatic balance varies between different vascular beds. In this review, we emphasize the heterogeneous nature of endothelial cell function. We then examine the role of endothelial diversity in modulating the phenotypic expression of thrombotic disorders.

REFERENCES

  • 1 Nawroth P P, Handley D, Stern D M. The multiple levels of endothelial cell-coagulation factor interactions.  Clin Haematol . 1986;  15 293-321
  • 2 Rodgers G M. Hemostatic properties of normal and perturbed vascular cells.  FASEB J . 1988;  2 116-123
  • 3 Bombeli T, Mueller M, Haeberli A. Anticoagulant properties of the vascular endothelium.  Thromb Haemost . 1997;  77 408-423
  • 4 Rosenberg R D, Aird W C. Vascular-bed-specific hemostasis and hypercoagulable states.  N Engl J Med . 1999;  340 1555-1564
  • 5 Yamamoto K, de Waard V, Fearns C, Loskutoff D J. Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo.  Blood . 1998;  92 2791-2801
  • 6 Yamamoto K, Loskutoff D J. Fibrin deposition in tissues from endotoxin-treated mice correlates with decreases in the expression of urokinase-type but not tissue-type plasminogen activator.  J Clin Invest . 1996;  97 2440-2451
  • 7 Østerud B, Bajaj M S, Bajaj S P. Sites of tissue factor pathway inhibitor (TFPI) and tissue factor expression under physiologic and pathologic conditions. On behalf of the Subcommittee on Tissue Factor Pathway Inhibitor (TFPI) of the Scientific and Standardization Committee of the ISTH.  Thromb Haemost . 1995;  73 873-875
  • 8 Ishii H, Salem H H, Bell C E, Laposata E A, Majerus P W. Thrombomodulin, an endothelial anticoagulant protein, is absent from the human brain.  Blood . 1986;  67 362-365
  • 9 Drake T A, Cheng J, Chang A, Taylor Jr B F. Expression of tissue factor, thrombomodulin, and E-selectin in baboons with lethal Escherichia coli sepsis [published erratum appears in Am J Pathol 1993;143:649].  Am J Pathol . 1993;  142 1458-1470
  • 10 Repo H, Harlan J M. Mechanisms and consequences of phagocyte adhesion to endothelium.  Ann Med . 1999;  31 156-165
  • 11 Eppihimer M J, Wolitzky B, Anderson D C, Labow M A, Granger D N. Heterogeneity of expression of E- and P-selectins in vivo.  Circ Res . 1996;  79 560-569
  • 12 McEver R P, Beckstead J H, Moore K L, Marshall-Carlson L, Bainton D F. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies.  J Clin Invest . 1989;  84 92-99
  • 13 Panes J, Perry M A, Anderson D C. Regional differences in constitutive and induced ICAM-1 expression in vivo.  Am J Physiol . 1995;  269 H1955-H1964
  • 14 Mulligan M S, Johnson K J, Todd R FD. Requirements for leukocyte adhesion molecules in nephrotoxic nephritis.  J Clin Invest . 1993;  91 577-587
  • 15 Mulligan M S, Lentsch A B, Shanley T P. Cytokine and adhesion molecule requirements for lung injury induced by anti-glomerular basement membrane antibody.  Inflammation . 1998;  22 403-417
  • 16 Mulligan M S, Vaporciyan A A, Miyasaka M, Tamatani T, Ward P A. Tumor necrosis factor alpha regulates in vivo intrapulmonary expression of ICAM-1.  Am J Pathol . 1993;  142 1739-1749
  • 17 Lopez S, Prats N, Marco A J. Expression of E-selectin, P-selectin, and intercellular adhesion molecule-1 during experimental murine listeriosis.  Am J Pathol . 1999;  155 1391-1397
  • 18 Guillot P V, Guan J, Liu L. A vascular bed-specific pathway.  J Clin Invest . 1999;  103 799-805
  • 19 Ursell P C, Mayes M. The majority of nitric oxide synthase in pig heart is vascular and not neural.  Cardiovasc Res . 1993;  27 1920-1924
  • 20 Pollock J S, Nakane M, Buttery L D. Characterization and localization of endothelial nitric oxide synthase using specific monoclonal antibodies.  Am J Physiol . 1993;  265 C1379-C1387
  • 21 Bachmann S, Bosse H M, Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney.  Am J Physiol . 1995;  268 F885-898
  • 22 Andries L J, Brutsaert D L, Sys S U. Nonuniformity of endothelial constitutive nitric oxide synthase distribution in cardiac endothelium.  Circ Res . 1998;  82 195-203
  • 23 Nadaud S, Philippe M, Arnal J F, Michel J B, Soubrier F. Sustained increase in aortic endothelial nitric oxide synthase expression in vivo in a model of chronic high blood flow.  Circ Res . 1996;  79 857-863
  • 24 Everett A D, Le Cras D T, Xue C, Johns R A. eNOS expression is not altered in pulmonary vascular remodeling due to increased pulmonary blood flow.  Am J Physiol . 1998;  274 L1058-1065
  • 25 Shaul P W, Kinane B, Farrar M A, Buja L M, Magness R R. Prostacyclin production and mediation of adenylate cyclase activity in the pulmonary artery. Alterations after prolonged hypoxia in the rat.  J Clin Invest . 1991;  88 447-455
  • 26 Subramanian V A, Hernandez Y, Tack-Goldman K, Grabowski E F, Weksler B B. Prostacyclin production by internal mammary artery as a factor in coronary artery bypass grafts.  Surgery . 1986;  100 376-383
  • 27 Bombeli T, Karsan A, Tait J F, Harlan J M. Apoptotic vascular endothelial cells become procoagulant.  Blood . 1997;  89 2429-2442
  • 28 Polunovsky V A, Wendt C H, Ingbar D H, Peterson M S, Bitterman P B. Induction of endothelial cell apoptosis by TNF alpha: Modulation by inhibitors of protein synthesis.  Exp Cell Res . 1994;  214 584-594
  • 29 Meredith Jr E J, Fazeli B, Schwartz M A. The extracellular matrix as a cell survival factor.  Mol Biol Cell . 1993;  4 953-961
  • 30 Re F, Zanetti A, Sironi M. Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells.  J Cell Biol . 1994;  127 537-546
  • 31 Bach F H, Ferran C, Hechenleitner P. Accommodation of vascularized xenografts: Expression of ``protective genes'' by donor endothelial cells in a host Th2 cytokine environment.  Nat Med . 1997;  3 196-204
  • 32 Bach F H, Hancock W W, Ferran C. Protective genes expressed in endothelial cells: A regulatory response to injury.  Immunol Today . 1997;  18 483-486
  • 33 Zwaal R F, Schroit A J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells.  Blood . 1997;  89 1121-1132
  • 34 Gimbrone Jr A M. Vascular endothelium: An integrator of pathophysiologic stimuli in atherosclerosis.  Am J Cardiol . 1995;  75 67B-70B
  • 35 Anderson T J, Gerhard M D, Meredith I T. Systemic nature of endothelial dysfunction in atherosclerosis.  Am J Cardiol . 1995;  75 71B-74B
  • 36 Blann A D, Lip G Y. The endothelium in atherothrombotic disease: Assessment of function, mechanisms and clinical implications.  Blood Coagul Fibrinolysis . 1998;  9 297-306
  • 37 Cines D B, Pollak E S, Buck C A. Endothelial cells in physiology and in the pathophysiology of vascular disorders.  Blood . 1998;  91 3527-3561
  • 38 Falanga A, Rickles F R. Pathophysiology of the thrombophilic state in the cancer patient.  Semin Thromb Hemost . 1999;  25 173-182
  • 39 Guba S C, Fonseca V, Fink L M. Hyperhomocysteinemia and thrombosis.  Semin Thromb Hemost . 1999;  25 291-309
  • 40 Upchurch Jr R G, Welch G N, Fabian A J. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase.  J Biol Chem . 1997;  272 17012-17017
  • 41 Chow K, Cheung F, Lao T T, Karmin O. Effect of homocysteine on the production of nitric oxide in endothelial cells.  Clin Exp Pharmacol Physiol . 1999;  26 817-818
  • 42 Lentz S R, Sadler J E. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine.  J Clin Invest . 1991;  88 1906-1914
  • 43 Nishinaga M, Ozawa T, Shimada K. Homocysteine, a thrombogenic agent, suppresses anticoagulant heparan sulfate expression in cultured porcine aortic endothelial cells.  J Clin Invest . 1993;  92 1381-1386
  • 44 Fryer R H, Wilson B D, Gubler D B, Fitzgerald L A, Rodgers G M. Homocysteine, a risk factor for premature vascular disease and thrombosis, induces tissue factor activity in endothelial cells.  Arterioscler Thromb . 1993;  13 1327-1333
  • 45 Wang H, Yoshizumi M, Lai K. Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine.  J Biol Chem . 1997;  272 25380-25385
  • 46 Lee M E, Wang H. Homocysteine and hypomethylation.  A novel link to vascular disease. Trends Cardiovasc Med . 1999;  9 49-54
  • 47 Durand P, Lussier-Cacan S, Blache D. Acute methionine load-induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis, and macrophage-derived tissue factor activity in rats.  FASEB J . 1997;  11 1157-1168
  • 48 Lentz S R, Sobey C G, Piegors D J. Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia.  J Clin Invest . 1996;  98 24-29
  • 49 Van den Berg M, Boers G H, Franken D G. Hyperhomocysteinaemia and endothelial dysfunction in young patients with peripheral arterial occlusive disease.  Eur J Clin Invest . 1995;  25 176-181
  • 50 Freyburger G, Labrouche S, Sassoust G. Mild hyperhomocysteinemia and hemostatic factors in patients with arterial vascular diseases.  Thromb Haemost . 1997;  77 466-471
  • 51 Aster R H. Heparin-induced thrombocytopenia and thrombosis [editorial; comment].  N Engl J Med . 1995;  332 1374-1376
  • 52 Visentin G P, Ford S E, Scott J P, Aster R H. Antibodies from patients with heparin-induced thrombocytopenia/thrombosis are specific for platelet factor 4 complexed with heparin or bound to endothelial cells.  J Clin Invest . 1994;  93 81-88
  • 53 Herbert J M, Savi P, Jeske W P, Walenga J M. Effect of SR121566A, a potent GP IIb-IIIa antagonist, on the HIT serum/heparin-induced platelet mediated activation of human endothelial cells.  Thromb Haemost . 1998;  80 326-331
  • 54 Warkentin T E, Hayward C P, Boshkov L K. Sera from patients with heparin-induced thrombocytopenia generate platelet-derived microparticles with procoagulant activity: An explanation for the thrombotic complications of heparin-induced thrombocytopenia.  Blood . 1994;  84 3691-3699
  • 55 Barry O P, FitzGerald G A. Mechanisms of cellular activation by platelet microparticles.  Thromb Haemost . 1999;  82 794-800
  • 56 Cines D B, Tomaski A, Tannenbaum S. Immune endothelial-cell injury in heparin-associated thrombocytopenia.  N Engl J Med . 1987;  316 581-589
  • 57 Kwaan H C, Sakurai S. Endothelial cell hyperplasia contributes to thrombosis in heparin-induced thrombocytopenia.  Semin Thromb Hemost . 1999;  25 23-27
  • 58 Makhoul R G, Greenberg C S, McCann R L. Heparin-associated thrombocytopenia and thrombosis: A serious clinical problem and potential solution.  J Vasc Surg . 1986;  4 522-528
  • 59 Boshkov L K, Warkentin T E, Hayward C P, Andrew M, Kelton J G. Heparin-induced thrombocytopenia and thrombosis: Clinical and laboratory studies.  Br J Haematol . 1993;  84 322-328
  • 60 Groger M, Sarmay G, Fiebiger E, Wolff K, Petzelbauer P. Dermal microvascular endothelial cells express CD32 receptors in vivo and in vitro.  J Immunol . 1996;  156 1549-1556
  • 61 Warkentin T E. Heparin-induced skin lesions.  Br J Haematol . 1996;  92 494-497
  • 62 Asherson R A, Khamashta M A, Ordi-Ros J. The ``primary'' antiphospholipid syndrome: Major clinical and serological features.  Medicine (Baltimore) . 1989;  68 366-374
  • 63 Finazzi G, Brancaccio V, Moia M. Natural history and risk factors for thrombosis in 360 patients with antiphospholipid antibodies: A four-year prospective study from the Italian Registry.  Am J Med . 1996;  100 530-536
  • 64 Bick R L, Baker W F. Antiphospholipid syndrome and thrombosis.  Semin Thromb Hemost . 1999;  25 333-350
  • 65 Greaves M. Antiphospholipid antibodies and thrombosis.  Lancet . 1999;  353 1348-1353
  • 66 Simantov R, Lo S K, Gharavi A. Antiphospholipid antibodies activate vascular endothelial cells.  Lupus . 1996;  5 440-441
  • 67 McCrae K R, DeMichele A, Samuels P. Detection of endothelial cell-reactive immunoglobulin in patients with anti-phospholipid antibodies.  Br J Haematol . 1991;  79 595-605
  • 68 Matsuda J, Gotoh M, Gohchi K. Anti-endothelial cell antibodies to the endothelial hybridoma cell line (EAhy926) in systemic lupus erythematosus patients with antiphospholipid antibodies.  Br J Haematol . 1997;  97 227-232
  • 69 Hill M B, Phipps J L, Malia R G, Greaves M, Hughes P. Characterization and specificity of anti-endothelial cell membrane antibodies and their relationship to thrombosis in primary antiphospholipid syndrome (APS).  Clin Exp Immunol . 1995;  102 368-372
  • 70 Arnout J. The pathogenesis of the antiphospholipid syndrome: A hypothesis based on parallelisms with heparin-induced thrombocytopenia.  Thromb Haemost . 1996;  75 536-541
  • 71 Combes V, Simon A C, Grau G E. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant.  J Clin Invest . 1999;  104 93-102
  • 72 Martinuzzo M E, Maclouf J, Carreras L O, Levy-Toledano S. Antiphospholipid antibodies enhance thrombin-induced platelet activation and thromboxane formation.  Thromb Haemost . 1993;  70 667-671
  • 73 Lin Y L, Wang C T. Activation of human platelets by the rabbit anticardiolipin antibodies.  Blood . 1992;  80 3135-3143
  • 74 Lindsey N J, Henderson F I, Malia R, Milford-Ward M A, Greaves M, Hughes P. Inhibition of prostacyclin release by endothelial binding anticardiolipin antibodies in thrombosis-prone patients with systemic lupus erythematosus and the antiphospholipid syndrome.  Br J Rheumatol . 1994;  33 20-26
  • 75 Lellouche F, Martinuzzo M, Said P, Maclouf J, Carreras L O. Imbalance of thromboxane/prostacyclin biosynthesis in patients with lupus anticoagulant.  Blood . 1991;  78 2894-2899
  • 76 Marciniak E, Romond E H. Impaired catalytic function of activated protein C: A new in vitro manifestation of lupus anticoagulant.  Blood . 1989;  74 2426-2432
  • 77 Malia R G, Kitchen S, Greaves M, Preston F E. Inhibition of activated protein C and its cofactor protein S by antiphospholipid antibodies.  Br J Haematol . 1990;  76 101-107
  • 78 Oosting J D, Preissner K T, Derksen R H, de Groot G P. Autoantibodies directed against the epidermal growth factor-like domains of thrombomodulin inhibit protein C activation in vitro.  Br J Haematol . 1993;  85 761-768
  • 79 Shibata S, Harpel P C, Gharavi A, Rand J, Fillit H. Autoantibodies to heparin from patients with antiphospholipid antibody syndrome inhibit formation of antithrombin III-thrombin complexes.  Blood . 1994;  83 2532-2540
  • 80 Tsakiris D A, Marbet G A, Makris P E, Settas L, Duckert F. Impaired fibrinolysis as an essential contribution to thrombosis in patients with lupus anticoagulant.  Thromb Haemost . 1989;  61 175-177
  • 81 Pierangeli S S, Colden-Stanfield M, Liu X, Barker J H, Anderson G L, Harris E N. Antiphospholipid antibodies from antiphospholipid syndrome patients activate endothelial cells in vitro and in vivo.  Circulation . 1999;  99 1997-2002
  • 82 Simantov R, LaSala J M, Lo S K. Activation of cultured vascular endothelial cells by antiphospholipid antibodies.  J Clin Invest . 1995;  96 2211-2219
  • 83 George J, Blank M, Levy Y. Differential effects of anti-beta2-glycoprotein I antibodies on endothelial cells and on the manifestations of experimental antiphospholipid syndrome.  Circulation . 1998;  97 900-906
  • 84 Branch D W, Rodgers G M. Induction of endothelial cell tissue factor activity by sera from patients with antiphospholipid syndrome: A possible mechanism of thrombosis.  Am J Obstet Gynecol . 1993;  168 206-210
  • 85 Bordron A, Dueymes M, Levy Y. The binding of some human antiendothelial cell antibodies induces endothelial cell apoptosis.  J Clin Invest . 1998;  101 2029-2035
  • 86 Nakamura N, Ban T, Yamaji K, Yoneda Y, Wada Y. Localization of the apoptosis-inducing activity of lupus anticoagulant in an annexin V-binding antibody subset.  J Clin Invest . 1998;  101 1951-1959
  • 87 Ferro D, Pittoni V, Quintarelli C. Coexistence of anti-phospholipid antibodies and endothelial perturbation in systemic lupus erythematosus patients with ongoing prothrombotic state.  Circulation . 1997;  95 1425-1432
  • 88 Atsumi T, Khamashta M A, Haworth R S. Arterial disease and thrombosis in the antiphospholipid syndrome: A pathogenic role for endothelin 1.  Arthritis Rheum . 1998;  41 800-807
  • 89 Hill M B, Phipps J L, Hughes P, Greaves M. Anti-endothelial cell antibodies in primary antiphospholipid syndrome and SLE: patterns of reactivity with membrane antigens on microvascular and umbilical venous cell membranes.  Br J Haematol . 1998;  103 416-421
  • 90 Cuadrado M J, Tinahones F, Camps M T. Antiphospholipid, anti-beta 2-glycoprotein-I and anti-oxidized-low-density-lipoprotein antibodies in antiphospholipid syndrome.  QJM . 1998;  91 619-626
  • 91 Harats D, George J, Levy Y. Atheroma: links with antiphospholipid antibodies, Hughes syndrome and lupus.  QJM . 1999;  92 57-59
  • 92 Hillmen P, Lewis S M, Bessler M, Luzzatto L, Dacie J V. Natural history of paroxysmal nocturnal hemoglobinuria.  N Engl J Med . 1995;  333 1253-1258
  • 93 Socie G, Mary J Y, de Gramont A. Paroxysmal nocturnal haemoglobinuria: Long-term follow-up and prognostic factors. French Society of Haematology.  Lancet . 1996;  348 573-577
  • 94 Rosse W F. Paroxysmal nocturnal hemoglobinuria as a molecular disease.  Medicine (Baltimore) . 1997;  76 63-93
  • 95 Hugel B, Socie G, Vu T. Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia.  Blood . 1999;  93 3451-3456
  • 96 Brooimans R A, van Wieringen A P, van Es A L, Daha M R. Relative roles of decay-accelerating factor, membrane cofactor protein, and CD59 in the protection of human endothelial cells against complement-mediated lysis.  Eur J Immunol . 1992;  22 3135-3140
  • 97 Brooimans R A, Van der Ark A A, Tomita M, Van Es A L, Daha M R. CD59 expressed by human endothelial cells functions as a protective molecule against complement-mediated lysis.  Eur J Immunol . 1992;  22 791-797
  • 98 Mason J C, Yarwood H, Sugars K. Induction of decay-accelerating factor by cytokines or the membrane-attack complex protects vascular endothelial cells against complement deposition.  Blood . 1999;  94 1673-1682
  • 99 Saadi S, Holzknecht R A, Patte C P, Stern D M, Platt J L. Complement-mediated regulation of tissue factor activity in endothelium.  J Exp Med . 1995;  182 1807-1814
  • 100 Tedesco F, Pausa M, Nardon E. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity.  J Exp Med . 1997;  185 1619-1627
  • 101 Foreman K E, Vaporciyan A A, Bonish B K. C5a-induced expression of P-selectin in endothelial cells.  J Clin Invest . 1994;  94 1147-1155
  • 102 Lozada C, Levin R I, Huie M. Identification of C1q as the heat-labile serum cofactor required for immune complexes to stimulate endothelial expression of the adhesion molecules E-selectin and intercellular and vascular cell adhesion molecules 1.  Proc Natl Acad Sci USA . 1995;  92 8378-8382
  • 103 Kilgore K S, Shen J P, Miller B F, Ward P A, Warren J S. Enhancement by the complement membrane attack complex of tumor necrosis factor-alpha-induced endothelial cell expression of E-selectin and ICAM- 1.  J Immunol . 1995;  155 1434-1441
  • 104 Hattori R, Hamilton K K, McEver R P, Sims P J. Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface.  J Biol Chem . 1989;  264 9053-9060
  • 105 Hamilton K K, Hattori R, Esmon C T, Sims P J. Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex.  J Biol Chem . 1990;  265 3809-3814
  • 106 Takahashi T, Kalka C, Masuda H. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization.  Nature Med . 1999;  5 434-438
  • 107 Asahara T, Masuda H, Takahashi T. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization.  Circ Res . 1999;  85 221-228
  • 108 Asahara T, Takahashi T, Masuda H. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells.  EMBO J . 1999;  18 3964-3972
  • 109 Cano-Gauci D F, Song H H, Yang H. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome.  J Cell Biol . 1999;  146 255-264
  • 110 Veugelers M, De Cat B, Ceulemans H. Glypican-6, a new member of the glypican family of cell surface heparan sulfate proteoglycans.  J Biol Chem . 1999;  274 26968-26977
  • 111 Gartner Jr C J, Hashida Y, O'Gorman M, Jaffe R. Endothelial proliferation in paroxysmal nocturnal hemoglobinuria.  Pediatr Pathol . 1988;  8 313-320
  • 112 Dunphy C H, Sotelo-Avila C, Luisiri A, Chu J Y. Paroxysmal nocturnal hemoglobinuria associated with venous thrombosis and papillary endothelial hyperplasia presenting as ulcerated duodenal mass.  Arch Pathol Lab Med . 1994;  118 837-839
  • 113 Francis Jr B R. Elevated fibrin D-dimer fragment in sickle cell anemia: Evidence for activation of coagulation during the steady state as well as in painful crisis.  Haemostasis . 1989;  19 105-111
  • 114 Devine D V, Kinney T R, Thomas P F, Rosse W F, Greenberg C S. Fragment D-dimer levels: an objective marker of vaso-occlusive crisis and other complications of sickle cell disease.  Blood . 1986;  68 317-319
  • 115 Kurantsin-Mills J, Ofosu F A, Safa T K, Siegel R S, Lessin L S. Plasma factor VII and thrombin-antithrombin III levels indicate increased tissue factor activity in sickle cell patients.  Br J Haematol . 1992;  81 539-544
  • 116 Hebbel R P, Boogaerts M A, Eaton J W, Steinberg M H. Erythrocyte adherence to endothelium in sickle-cell anemia. A possible determinant of disease severity.  N Engl J Med . 1980;  302 992-995
  • 117 Mohandas N, Evans E. Adherence of sickle erythrocytes to vascular endothelial cells: Requirement for both cell membrane changes and plasma factors.  Blood . 1984;  64 282-287
  • 118 Manodori A B, Matsui N M, Chen J Y, Embury S H. Enhanced adherence of sickle erythrocytes to thrombin-treated endothelial cells involves interendothelial cell gap formation.  Blood . 1998;  92 3445-3454
  • 119 Hebbel R P. Perspectives series: Cell adhesion in vascular biology. Adhesive interactions of sickle erythrocytes with endothelium.  J Clin Invest . 1997;  99 2561-2564
  • 120 Barabino G A, McIntire L V, Eskin S G, Sears D A, Udden M. Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow.  Blood . 1987;  70 152-157
  • 121 Kaul D K, Fabry M E, Nagel R L. Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: Pathophysiological implications.  Proc Natl Acad Sci USA . 1989;  86 3356-3360
  • 122 Kaul D K, Fabry M E, Costantini F, Rubin E M, Nagel R L. In vivo demonstration of red cell-endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse.  J Clin Invest . 1995;  96 2845-2853
  • 123 Sultana C, Shen Y, Rattan V, Johnson C, Kalra V K. Interaction of sickle erythrocytes with endothelial cells in the presence of endothelial cell conditioned medium induces oxidant stress leading to transendothelial migration of monocytes.  Blood . 1998;  92 3924-3935
  • 124 Phelan M, Perrine S P, Brauer M, Faller D V. Sickle erythrocytes, after sickling, regulate the expression of the endothelin-1 gene and protein in human endothelial cells in culture.  J Clin Invest . 1995;  96 1145-1151
  • 125 Smolinski P A, Offermann M K, Eckman J R, Wick T M. Double-stranded RNA induces sickle erythrocyte adherence to endothelium: A potential role for viral infection in vaso-occlusive pain episodes in sickle cell anemia.  Blood . 1995;  85 2945-2950
  • 126 Hebbel R P, Vercellotti G M. The endothelial biology of sickle cell disease.  J Lab Clin Med . 1997;  129 288-293
  • 127 Liu X W, Pierangeli S S, Barker J, Wick T M, Hsu L L. RBC adhesion to cremaster endothelium in mice with abnormal hemoglobin is increased by topical endotoxin.  Ann N Y Acad Sci . 1998;  850 391-393
  • 128 Sowemimo-Coker S O, Meiselman H J, Francis Jr B R. Increased circulating endothelial cells in sickle cell crisis.  Am J Hematol . 1989;  31 263-265
  • 129 Solovey A, Lin Y, Browne P. Circulating activated endothelial cells in sickle cell anemia.  N Engl J Med . 1997;  337 1584-1590
  • 130 Solovey A, Gui L, Key N S, Hebbel R P. Tissue factor expression by endothelial cells in sickle cell anemia.  J Clin Invest . 1998;  101 1899-1904
  • 131 Stuart M J, Setty B N. Sickle cell acute chest syndrome: pathogenesis and rationale for treatment.  Blood . 1999;  94 1555-1560
  • 132 Stockman J A, Nigro M A, Mishkin M M, Oski F A. Occlusion of large cerebral vessels in sickle-cell anemia.  N Engl J Med . 1972;  287 846-849
  • 133 Russell M O, Goldberg H I, Hodson A. Effect of transfusion therapy on arteriographic abnormalities and on recurrence of stroke in sickle cell disease.  Blood . 1984;  63 162-169
  • 134 Brittain H A, Eckman J R, Wick T M. Sickle erythrocyte adherence to large vessel and microvascular endothelium under physiologic flow is qualitatively different.  J Lab Clin Med . 1992;  120 538-545
  • 135 Weiler-Guettler H, Christie P D, Beeler D L. A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state.  J Clin Invest . 1998;  101 1983-1991
  • 136 Ohlin A K, Marlar R A. The first mutation identified in the thrombomodulin gene in a 45-year-old man presenting with thromboembolic disease.  Blood . 1995;  85 330-336
  • 137 Ireland H, Kunz G, Kyriakoulis K, Stubbs P J, Lane D A. Thrombomodulin gene mutations associated with myocardial infarction.  Circulation . 1997;  96 15-18
  • 138 Doggen C J, Kunz G, Rosendaal F R. A mutation in the thrombomodulin gene, 127G to A coding for Ala25Thr, and the risk of myocardial infarction in men.  Thromb Haemost . 1998;  80 743-748
  • 139 Le Flem L, Picard V, Emmerich J. Mutations in promoter region of thrombomodulin and venous thromboembolic disease.  Arterioscler Thromb Vasc Biol . 1999;  19 1098-1104
  • 140 Stegnar M, Uhrin P, Peternel P. The 4G/5G sequence polymorphism in the promoter of plasminogen activator inhibitor-1 (PAI-1) gene: Relationship to plasma PAI-1 level in venous thromboembolism.  Thromb Haemost . 1998;  79 975-979
  • 141 Margaglione M, Cappucci G, Colaizzo D. The PAI-1 gene locus 4G/5G polymorphism is associated with a family history of coronary artery disease.  Arterioscler Thromb Vasc Biol . 1998;  18 152-156
  • 142 Shimasaki Y, Yasue H, Yoshimura M. Association of the missense Glu298Asp variant of the endothelial nitric oxide synthase gene with myocardial infarction.  J Am Coll Cardiol . 1998;  31 1506-1510
  • 143 Hibi K, Ishigami T, Tamura K. Endothelial nitric oxide synthase gene polymorphism and acute myocardial infarction.  Hypertension . 1998;  32 521-526
  • 144 Hingorani A D, Liang C F, Fatibene J. A common variant of the endothelial nitric oxide synthase (Glu298 ?.  Asp) is a major risk factor for coronary artery disease in the UK. Circulation . 1999;  100 1515-1520
  • 145 Philip I, Plantefeve G, Vuillaumier-Barrot S. G894T polymorphism in the endothelial nitric oxide synthase gene is associated with an enhanced vascular responsiveness to phenylephrine.  Circulation . 1999;  99 3096-3098
  • 146 Wang X L, Sim A S, Badenhop R F, McCredie R M, Wilcken D E. A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene.  Nature Med . 1996;  2 41-45
  • 147 Miyata T, Sakata T, Kumeda K. C-399T polymorphism in the promoter region of human tissue factor pathway inhibitor (TFPI) gene does not change the plasma TFPI antigen level and does not cause venous thrombosis [letter].  Thromb Haemost . 1998;  80 345-346
  • 148 Moatti D, Seknadji P, Galand C. Polymorphisms of the tissue factor pathway inhibitor (TFPI) gene in patients with acute coronary syndromes and in healthy subjects: Impact of the V264M substitution on plasma levels of TFPI.  Arterioscler Thromb Vasc Biol . 1999;  19 862-869
  • 149 Arnaud E, Moatti D, Emmerich J, Aiach M, de Prost D. No link between the TFPI V264M mutation and venous thromboembolic disease [letter].  Thromb Haemost . 1999;  82 159-160
  • 150 Carlsson L E, Santoso S, Baurichter G. Heparin-induced thrombocytopenia: New insights into the impact of the FcgammaRIIa-R-H131 polymorphism.  Blood . 1998;  92 1526-1531
  • 151 Moake J L, Chow T W. Thrombotic thrombocytopenic purpura: Understanding a disease no longer rare.  Am J Med Sci . 1998;  316 105-119
  • 152 Asada Y, Sumiyoshi A, Hayashi T, Suzumiya J, Kaketani K. Immunohistochemistry of vascular lesion in thrombotic thrombocytopenic purpura, with special reference to factor VIII related antigen.  Thromb Res . 1985;  38 469-479
  • 153 Ridolfi R L, Bell W R. Thrombotic thrombocytopenic purpura. Report of 25 cases and review of the literature.  Medicine (Baltimore) . 1981;  60 413-428
  • 154 Koenig D W, Barley-Maloney L, Daniel T O. A Western blot assay detects autoantibodies to cryptic endothelial antigens in thrombotic microangiopathies.  J Clin Immunol . 1993;  13 204-211
  • 155 Tandon N N, Rock G, Jamieson G A. Anti-CD36 antibodies in thrombotic thrombocytopenic purpura.  Br J Haematol . 1994;  88 816-825
  • 156 Umibe T, Nawata Y, Mori N. [Thrombotic thrombocytopenic purpura (TTP) observed in a patient with primary antiphospholipid antibody syndrome].  Ryumachi . 1994;  34 981-987
  • 157 del Arco A, Martinez M A, Pena J M. Thrombotic thrombocytopenic purpura associated with human immunodeficiency virus infection: Demonstration of p24 antigen in endothelial cells.  Clin Infect Dis . 1993;  17 360-363
  • 158 Noris M, Ruggenenti P, Todeschini M. Increased nitric oxide formation in recurrent thrombotic microangiopathies: A possible mediator of microvascular injury.  Am J Kidney Dis . 1996;  27 790-796
  • 159 Wada H, Ohiwa M, Kaneko T. Plasma thrombomodulin as a marker of vascular disorders in thrombotic thrombocytopenic purpura and disseminated intravascular coagulation.  Am J Hematol . 1992;  39 20-24
  • 160 Wada H, Minamikawa K, Wakita Y. Increased vascular endothelial cell markers in patients with disseminated intravascular coagulation.  Am J Hematol . 1993;  44 85-88
  • 161 Kobayashi M, Wada H, Wakita Y. Decreased plasma tissue factor pathway inhibitor levels in patients with thrombotic thrombocytopenic purpura.  Thromb Haemost . 1995;  73 10-14
  • 162 Mitra D, Jaffe E A, Weksler B. Thrombotic thrombocytopenic purpura and sporadic hemolytic-uremic syndrome plasmas induce apoptosis in restricted lineages of human microvascular endothelial cells.  Blood . 1997;  89 1224-1234
  • 163 Moake J L. Haemolytic-uraemic syndrome: Basic science.  Lancet . 1994;  343 393-397
  • 164 Obrig T G, Louise C B, Lingwood C A. Endothelial heterogeneity in Shiga toxin receptors and responses.  J Biol Chem . 1993;  268 15484-15488
  • 165 Jennette J C, Falk R J. Small-vessel vasculitis.  N Engl J Med . 1997;  337 1512-1523
  • 166 Belmont H M, Abramson S B, Lie J T. Pathology and pathogenesis of vascular injury in systemic lupus erythematosus. Interactions of inflammatory cells and activated endothelium.  Arthritis Rheum . 1996;  39 9-22
  • 167 Boehme M W, Nawroth P P, Kling E. Serum thrombomodulin. A novel marker of disease activity in systemic lupus erythematosus.  Arthritis Rheum . 1994;  37 572-577
  • 168 Boehme M W, Schmitt W H, Youinou P, Stremmel W R, Gross W L. Clinical relevance of elevated serum thrombomodulin and soluble E-selectin in patients with Wegener's granulomatosis and other systemic vasculitides.  Am J Med . 1996;  101 387-394
  • 169 D'Cruz D, Direskeneli H, Khamashta M, Hughes G R. Lymphocyte activation markers and von Willebrand factor antigen in Wegener's granulomatosis: Potential markers for disease activity.  J Rheumatol . 1999;  26 103-109
  • 170 Herrick A L, Illingworth K, Blann A. Von Willebrand factor, thrombomodulin, thromboxane, beta-thromboglobulin and markers of fibrinolysis in primary Raynaud's phenomenon and systemic sclerosis.  Ann Rheum Dis . 1996;  55 122-127
  • 171 Wang C R, Liu M F, Tsai R T, Chuang C Y, Chen C Y. Circulating intercellular adhesion molecules-1 and autoantibodies including anti-endothelial cell, anti-cardiolipin, and anti-neutrophil cytoplasma antibodies in patients with vasculitis.  Clin Rheumatol . 1993;  12 375-380
  • 172 Sneller M C, Fauci A S. Pathogenesis of vasculitis syndromes.  Med Clin North Am . 1997;  81 221-242
  • 173 Ferraro G, Meroni P L, Tincani A. Anti-endothelial cell antibodies in patients with Wegener's granulomatosis and micropolyarteritis.  Clin Exp Immunol . 1990;  79 47-53
  • 174 Leung D Y, Collins T, Lapierre L A, Geha R S, Pober J S. Immunoglobulin M antibodies present in the acute phase of Kawasaki syndrome lyse cultured vascular endothelial cells stimulated by gamma interferon.  J Clin Invest . 1986;  77 1428-1435
  • 175 del Papa N, Meroni P L, Barcellini W. Antibodies to endothelial cells in primary vasculitides mediate in vitro endothelial cytotoxicity in the presence of normal peripheral blood mononuclear cells.  Clin Immunol Immunopathol . 1992;  63 267-274
  • 176 Kobold A C, van Wijk T R, Franssen C F. In vitro up-regulation of E-selectin and induction of interleukin-6 in endothelial cells by autoantibodies in Wegener's granulomatosis and microscopic polyangiitis.  Clin Exp Rheumatol . 1999;  17 433-440
  • 177 Boom B W, Mommaas M, Daha M R, Vermeer B J. Complement-mediated endothelial cell damage in immune complex vasculitis of the skin: Ultrastructural localization of the membrane attack complex.  J Invest Dermatol . 1989;  93 68S-72S
  • 178 Suttorp N, Bhakdi S. Terminal complement complex and endothelial cells.  Z Kardiol . 1989;  78 140-142
  • 179 Mayet W J, Schwarting A, Orth T. Signal transduction pathways of membrane expression of proteinase 3 (PR- 3) in human endothelial cells.  Eur J Clin Invest . 1997;  27 893-899
  • 180 De Bandt M, Meyer O, Dacosta L, Elbim C, Pasquier C. Anti-proteinase-3 (PR3) antibodies (C-ANCA) recognize various targets on the human umbilical vein endothelial cell (HUVEC) membrane.  Clin Exp Immunol . 1999;  115 362-368
  • 181 Sibelius U, Hattar K, Schenkel A. Wegener's granulomatosis: Anti-proteinase 3 antibodies are potent inductors of human endothelial cell signaling and leakage response.  J Exp Med . 1998;  187 497-503
  • 182 de Bandt M, Ollivier V, Meyer O. Induction of interleukin-1 and subsequent tissue factor expression by anti-proteinase 3 antibodies in human umbilical vein endothelial cells.  Arthritis Rheum . 1997;  40 2030-2038
  • 183 Mayet W J, Meyer zum Büschenfelde K H. Antibodies to proteinase 3 increase adhesion of neutrophils to human endothelial cells.  Clin Exp Immunol . 1993;  94 440-446
  • 184 Yang J J, Kettritz R, Falk R J, Jennette J C, Gaido M L. Apoptosis of endothelial cells induced by the neutrophil serine proteases proteinase 3 and elastase.  Am J Pathol . 1996;  149 1617-1626
  • 185 Dichek D, Quertermous T. Thrombin regulation of mRNA levels of tissue plasminogen activator and plasminogen activator inhibitor-1 in cultured human umbilical vein endothelial cells.  Blood . 1989;  74 222-228
  • 186 Anrather D, Millan M T, Palmetshofer A. Thrombin activates nuclear factor-kappaB and potentiates endothelial cell activation by TNF.  J Immunol . 1997;  159 5620-5628
  • 187 Golden C L, Nick H S, Visner G A. Thrombin regulation of endothelin-1 gene in isolated human pulmonary endothelial cells.  Am J Physiol . 1998;  274 L854-L863
  • 188 Kaplanski G, Marin V, Fabrigoule M. Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106).  Blood . 1998;  92 1259-1267
  • 189 Tsopanoglou N E, Maragoudakis M E. On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors.  J Biol Chem. 1999;  274 23969-23976
  • 190 Nagy Z, Kolev K, Csonka E, Pek M, Machovich R. Contraction of human brain endothelial cells induced by thrombogenic and fibrinolytic factors. An in vitro cell culture model.  Stroke . 1995;  26 265-270
  • 191 Itoh Y, Tomita M, Tanahashi N. Platelet adhesion to aortic endothelial cells in vitro after thrombin treatment: Observation with video-enhanced contrast microscopy.  Thromb Res . 1998;  91 15-21
  • 192 Qi J, Goralnick S, Kreutzer D L. Fibrin regulation of interleukin-8 gene expression in human vascular endothelial cells.  Blood . 1997;  90 3595-3602
  • 193 Kaplan K L, Mather T, DeMarco L, Solomon S. Effect of fibrin on endothelial cell production of prostacyclin and tissue plasminogen activator.  Arteriosclerosis . 1989;  9 43-49
  • 194 Kadish J L, Butterfield C E, Folkman J. The effect of fibrin on cultured vascular endothelial cells.  Tissue Cell . 1979;  11 99-108
  • 195 Ribes J A, Francis C W, Wagner D D. Fibrin induces release of von Willebrand factor from endothelial cells.  J Clin Invest . 1987;  79 117-123
  • 196 Eguchi H, Ikeda H, Murohara T. Endothelial injuries of coronary arteries distal to thrombotic sites: Role of adhesive interaction between endothelial P-selectin and leukocyte sialyl LewisX.  Circ Res . 1999;  84 525-535
  • 197 Suzuki H, Abe K, Tojo S. A change of P-selectin immunoreactivity in rat brain after transient and permanent middle cerebral artery occlusion.  Neurol Res . 1998;  20 463-469
  • 198 Connolly Jr S E, Winfree C J, Prestigiacomo C J. Exacerbation of cerebral injury in mice that express the P-selectin gene: Identification of P-selectin blockade as a new target for the treatment of stroke.  Circ Res . 1997;  81 304-310
  • 199 Sawa H, Fujii S, Sobel B E. Augmented arterial wall expression of type-1 plasminogen activator inhibitor induced by thrombosis.  Arterioscler Thromb . 1992;  12 1507-1515
  • 200 Lang I M, Marsh J J, Olman M A. Expression of type 1 plasminogen activator inhibitor in chronic pulmonary thromboemboli.  Circulation . 1994;  89 2715-2721
  • 201 Lang I M, Moser K M, Schleef R R. Elevated expression of urokinase-like plasminogen activator and plasminogen activator inhibitor type 1 during the vascular remodeling associated with pulmonary thromboembolism.  Arterioscler Thromb Vasc Biol . 1998;  18 808-815
  • 202 Wakefield T W, Strieter R M, Wilke C A. Venous thrombosis-associated inflammation and attenuation with neutralizing antibodies to cytokines and adhesion molecules [published erratum appears in Arterioscler Thromb Vasc Biol 1995;15:550].  Arterioscler Thromb Vasc Biol . 1995;  15 258-268
  • 203 Wakefield T W, Strieter R M, Downing L J. P-selectin and TNF inhibition reduce venous thrombosis inflammation.  J Surg Res . 1996;  64 26-31
  • 204 Wakefield T W, Strieter R M, Prince M R, Downing L J, Greenfield L J. Pathogenesis of venous thrombosis: A new insight.  Cardiovasc Surg . 1997;  5 6-15
  • 205 Downing L J, Wakefield T W, Strieter R M. Anti-P-selectin antibody decreases inflammation and thrombus formation in venous thrombosis.  J Vasc Surg. 1997;  25 816-827 828