Plant Biol (Stuttg) 2000; 2(3): 290-296
DOI: 10.1055/s-2000-3709
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Distribution of γ-Tubulin in Higher Plant Cells: Cytosolic γ-Tubulin is Part of High Molecular Weight Complexes

V. Stoppin-Mellet 1 , C. Peter 2 , A. M. Lambert 2
  • 1 Present address: Laboratoire de Physiologie Végétale, UMR 5019 CEA-CNRS-Université Joseph Fourier, Département de Biologie Moléculaire et Structurale, Grenoble, France
  • 2 Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique UPR 406, Université Louis Pasteur, Strasbourg, France
Weitere Informationen

Publikationsverlauf

November 13, 1999

March 30, 2000

Publikationsdatum:
31. Dezember 2000 (online)

Abstract

γ-Tubulin is a protein found in all eukaryotic cells, where it plays a key role in the nucleation of microtubules. In higher plant cells, γ-tubulin is localized at the nuclear surface, a known microtubule-organizing centre, and is codistributed with all microtubule arrays. Functions of plant γ-tubulin remain to be determined. This study describes some properties of higher plant γ-tubulin. The overall level of γ-tubulin was constant during the cell cycle in synchronized tobacco BY-2 cells. Biochemical analysis of the subcellular distribution of γ-tubulin in maize cells revealed that, in contrast with animal γ-tubulin, plant γ-tubulin is mainly associated with endomembranes. We showed for the first time that the pool of soluble cytosolic γ-tubulin contained two main γ-tubulin complexes. γ-tubulin, Hsp70 and TCP1-related proteins might interact in a small complex of 750 kDa. A second γ-tubulin complex, larger than 1500 kDa was purified. The protein profile of this large complex was very similar to animal γ-tubulin complexes. The putative functions of these two complexes in plant microtubule nucleation are discussed.

Abbreviations

γTuRC: γ-tubulin ring complex

Hsp: heat shock protein

MTOC: microtubule organizing centre

SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SPB: spindle pole body

TCP1: T-complex polypeptide 1

References

  • 01 Hyman,  A., and Karsenti,  E.. (1998);  The role of nucleation in patterning microtubule networks.  J. Cell Sci.. 111 2077-2083
  • 02 Vantard,  M.,, Stoppin,  V.,, and Lambert,  A. M.. (1997) Cell-cycle dependent nucleation and assembly of plant microtubule proteins. Plant Cell Division. Francis, D., Dudits, D., and Inze, D., eds. London; Portland Press pp. 301-318
  • 03 Stoppin,  V.,, Vantard,  M.,, Schmit,  A. C.,, and Lambert,  A. M.. (1994);  Isolated plant nuclei nucleate microtubule assembly: the nuclear surface in higher plants has centrosome-like activity.  Plant Cell. 6 1099-1106
  • 04 Wasteneys,  G. O.,, Gunning,  B. E. S., , and Hepler,  P. K.. (1993);  Microinjection of fluorescent brain tubulin reveals dynamic properties of cortical microtubules in living plant cells.  Cell Motil. Cytoskeleton. 24 205-213
  • 05 Vaughn,  K. C., and Harper,  J. D. I.. (1998);  Microtubule-organizing centers and nucleating sites in land plants.  Int. Rev. Cytol.. 181 75-149
  • 06 Oakley,  B. R.. (1994) γ-Tubulin. Microtubules, Modern Cell Biol. Hyams, J.S. and Llyod, C.W., eds. New-York; Wiley-Liss pp. 33-45
  • 07 Pereira,  G., and Schiebel,  E.. (1997);  Centrosome-microtubule nucleation.  J. Cell Sci.. 110 295-300
  • 08 Jeng,  R., and Stearns,  T.. (1999);  γ-Tubulin complexes: size does matter.  Trends Cell Biol.. 9 339-342
  • 09 Liu,  B.,, Marc,  J.,, Joshi,  H. C.,, and Palevitz,  B. A.. (1993);  A γ-tubulin related protein associated with the microtubule arrays of higher plant cells in a cell cycle dependent manner.  J. Cell Sci.. 104 1217-1228
  • 10 Liu,  B.,, Joshi,  H. C.,, and Palevitz,  B. A.. (1995);  Experimental manipulation of γ-tubulin distribution in Arabidopsis using anti-microtubule drugs.  Cell Motil. Cytoskeleton. 31 113-129
  • 11 Binarova,  P.,, Hause,  B.,, Dolezel,  J.,, and Draber,  P.. (1998);  Association of γ-tubulin with kinetochore/centromeric region of plant chromosomes.  Plant J.. 14 751-757
  • 12 Joshi,  H. C., and Palevitz,  B. A.. (1996);  γ-Tubulin and microtubule organization in plants.  Trends Cell Biol.. 6 41-44
  • 13 Nagata,  T.,, Nemoto,  Y.,, and Hasezawa,  S.. (1992);  Tobacco BY-2 cell line as the “HeLa” cell in the biology of higher plants.  Int. Rev. Cytol.. 132 1-30
  • 14 Reichheld,  J. P.,, Sonobe,  S.,, Clement,  B.,, Chaubet,  N.,, and Gigot,  C.,. (1995);  Cell cycle-regulated histone gene expression in synchronized plant cells.  Plant J.. 7 245-252
  • 15 Mummert,  E.,, Grimm,  R.,, Speth,  V.,, Eckerskorn,  C.,, Schiltz,  E.,, Gatenby,  A. A.,, and Schafer,  E.. (1993);  A TCP1-related molecular chaperone from plants refolds phytochrome to its photoreversible form.  Nature. 363 644-648
  • 16 Felix,  M. A.,, Antony,  C.,, Wright,  M.,, and Maro,  B.. (1994);  Centrosome assembly in vitro: role of γ-tubulin recruitment in Xenopus aster formation.  J. Cell Biol.. 124 19-31
  • 17 Laemmli,  U. K.. (1970);  Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. 227 680-685
  • 18 O'Farrel,  P. H.. (1975);  High resolution two dimensional electrophoresis of proteins.  J. Biol. Chem.. 250 4007-4012
  • 19 Towbin,  H.,, Staehelin,  T.,, and Gordon,  J.. (1979);  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.  Proc. Natl. Acad. Sci. USA. 76 4350-4354
  • 20 Marchesi,  V. T., and Ngo,  N.. (1993);  In vitro assembly of multiprotein complexes containing α, β and γ tubulin, heat shock protein HSP70, and elongation factor 1α.  Proc. Natl. Acad. Sci. USA. 90 3028-3032
  • 21 Melki,  R.,, Vainberg,  I. E.,, Chow,  R. L.,, and Cowan,  N. J.. (1993);  Chaperonin-mediated folding of vertebrate actin-related protein and γ-tubulin.  J. Cell Biol.. 122 1301-1310
  • 22 Moudjou,  M.,, Bordes,  N.,, Paintrand,  M.,, and Bornens,  M.. (1996);  γ-Tubulin in mammalian cells: the centrosomal and the cytosolic forms.  J. Cell Sci.. 109 875-887
  • 23 Zheng,  Y.,, Wong,  M. L.,, Alberts,  B.,, and Mitchison,  T.. (1995);  Nucleation of microtubule assembly by a γ-tubulin-containing ring complex.  Nature. 378 578-583
  • 24 Detraves,  C.,, Marzaguil,  M. I.,, Lajoie,  M. I.,, Julian,  M.,, Raynaud,  M. B.,, and Wright,  M.. (1997);  Protein complexes containing γ-tubulin are present in mammalian brain microtubule protein preparations.  Cell Motil. Cytoskeleton. 36 179-189
  • 25 Murphy,  S. M.,, Urbani,  L.,, and Stearns,  T.. (1998);  The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components Spc97p and Spc98p.  J. Cell Biol.. 141 663-674
  • 26 Oegema,  K.,, Wiese,  C.,, Martin,  O. C.,, Milligan,  R. A.,, Iwamatsu,  A.,, Mitchison,  T. J.,, and Zheng,  Y.. (1999);  Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules.  J. Cell Biol.. 144 721-733
  • 27 Knop,  M., and Schiebel,  E.. (1997);  Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p.  EMBO J.. 16 6985-6995
  • 28 Cyr,  R. J., and Palevitz,  B. A.. (1995);  Organization of cortical microtubules in plant cells.  Curr. Opin. Cell Biol.. 7 65-71
  • 29 Mazia,  D.. (1987);  The chromosome cycle and the centrosome cycle in the mitotic cycle.  Int. Rev. Cytol.. 100 49-92
  • 30 Liang,  P., and MacRae,  T. H.. (1997);  Molecular chaperones and the cytoskeleton.  J. Cell Sci.. 110 1431-1440
  • 31 Martin,  M. A.,, Osmani,  S. A.,, and Oakley,  B. R.. (1997);  The role of γ-tubulin in mitotic spindle formation and cell cycle progression in Aspergillus nidulans.  J. Cell Sci.. 110 623-633
  • 32 Tassin,  A. M.,, Celati,  M.,, Moudjou,  M.,, and Bornens,  M.. (1998);  Characterization of the human homologue of the yeast Spc98p and its association with γ-tubulin.  J. Cell Biol.. 141 689-701
  • 33 Khodjakov,  A., and Rieder,  C. L.. (1999);  The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules.  J. Cell Biol.. 146 585-596
  • 34 Stoppin-Mellet,  V.,, Peter,  C.,, Buendia,  B.,, Karsenti,  E.,, and Lambert,  A. M.. (1999);  Tobacco BY-2 cell-free extracts induce the recovery of microtubule nucleating activity of inactivated mammalian centrosomes.  Biochim. Biophys. Acta. 1449 101-106
  • 35 Lajoie-Mazenc,  I.,, Tollon,  Y.,, Detraves,  C.,, Julian,  M.,, Moisand,  A.,, Gueth-Hallonet,  C.,, Debec,  A.,, Salles-Passador,  I.,, Puget,  A.,, Mazarguil,  H.,, Raynaud-Messina,  B.,, and Wright,  M.. (1994);  Recruitment of antigenic gamma-tubulin during mitosis in animal cells: presence of gamma-tubulin in the mitotic spindle.  J. Cell Sci.. 107 2825-2837
  • 36 Smirnova,  E. A., and Bajer,  A. S.. (1992);  Spindle poles in higher plant mitosis.  Cell Motil. Cytoskeleton. 23 1-7

V. Stoppin-Mellet

Laboratoire de Physiologie Végétale UMR 5019 CEA-CNRS-Université Joseph Fourier Départment de Biologie Moléculaire et Structurale

CEA-Grenoble 17 rue des martyrs 38054 Grenoble cedex 9 France

eMail: vstoppinmellet@cea.fr

Section Editor: A. M. C. Emons