Zusammenfassung:
Tierexperimentelle Befunde legen nahe, dass die in der BAL nachweisbare AP zu einem
wesentlichen Teil im Pneumozyten II produziert wird und dass eine Schädigung der Pneumozyten
II mit einer Erhöhung der AP in der BAL verbunden ist. Ziel unserer Untersuchung war
die Klärung der Frage, ob die Bestimmung der AP in der BAL bei der Diagnostik interstitieller
Lungenkrankheiten hilfreich sein kann. Zum Nachweis eines eventuellen Übertritts der
AP aus dem Plasmaraum in die BAL wurde das Albumin in der BAL gemessen und der AP/Albumin-Quotient
errechnet. In die Auswertung gingen 85 Patienten mit folgenden Diagnosen ein: 34 Sarkoidosen
(Stadium I/II/III 14/7/13), 14 idiopathische Lungenfibrosen (IPF), 7-mal Bronchiolitis
obliterans mit organisierender Pneumonie (BOOP), 6 exogen-allergische Alveolitiden
(EAA), 24 Kontrollen (13 Nichtraucher, 11 Raucher). Wir sahen bei IPF und BOOP eine
signifikante Erhöhung der AP in der BAL im Vergleich mit Kontrollen und Sarkoidose
(42,4 ± 36,6 bzw. 35,6 ± 16 vs. 15,8 ± 12,7 bzw. 15,0 ± 9,8 jeweils U/l). Das Albumin
in der BAL war bei Sarkoidose im Vergleich mit den Kontrollen signifikant erhöht (13,2
± 10 vs. 5,7 ± 4 mg/dl), der AP/Albuminquotient erniedrigt (1,3 ± 0,9 vs. 3,6 ± 3,0
U/10 mg). Das diskordante Verhalten von AP und Albumin bei veschiedenen Krankheiten
spricht gegen eine plasmatische Beimischung als Ursache der AP in der BAL. Ohne Einfluss
auf AP und Albumin in der BAL war bei der Sarkoidose das Stadium der Erkrankung und
bei der Kontrollgruppe die Tatsache eines Nikotinkonsums. Schlussfolgerung: Bei Patienten
mit chronischen interstitiellen Lungenkrankheiten zeigen sich in Abhängigkeit vom
Krankheitsbild unterschiedliche Konzentrationen von AP und Albumin in der BAL. Insbesondere
für die Diagnostik einer IPF (erhöhte AP, normaler AP/Albuminquotient) und einer Sarkoidose
(normale AP, erniedrigter AP/Albuminquotient) könnte deren Bestimmung hilfreich sein.
Concentration of Alkaline Phosphatase (AP) and AP-albumine-ratio in Bronchoalveolar
Lavage (BAL) as a Diagnostic Tool in Interstitial Lung Diseases:
As a result of several studies with different animal models there is evidence that
the concentration of AP in BAL is produced in the pneumocyte II and that an increase
of AP in the BAL is a marker of tissue damage. By measuring AP in the BAL of patients
with interstitial lung diseases we investigated its potential role as a diagnostic
tool. To detect plasma leakage we also measured the concentration of albumine in the
BAL. We studied 85 patients with following diagnoses: Sarcoidosis in 34 patients (Stage
1/2/3 14/7/13), idiopathic pulmonary fibrosis (IPF) in 14, bronchiolitis obliterans
with organizing pneumonia (BOOP) in 7, hypersensitivity pneumonitis (HP) in 6. The
control group consisted in 24 patients (13 nonsmokers, 11 smokers). In IPF and BOOP
we observed significantly higher concentrations of AP than in controls and sarcoidosis
(42.4 ± 36.6 and 35.6 ± 16 vs. 15.8 ± 12.7 and 15.0 ± 9.8 U/l, p < 0.05, ANOVA). Compared
with controls in sarcoidosis higher concentrations of albumine (5.7 ± 4 vs. 13.2 ±
10 mg/dl, p < 0.05, ANOVA) and a lower AP/albumin-ratio (3.6 ± 3.0 vs. 1.3 ± 0.9 U/10
mg, p < 0.05, ANOVA) were seen. This result is an argument against plasma leakage
as the source of AP in BAL. There were no differences in AP and albumine between the
different stages of sarcoidosis and between smokers and nonsmokers in the control
group. We conclude, that there are different concentrations of AP and albumine in
BAL in different interstitial lung diseases. Compared with controls we observed higher
concentrations of AP and an AP/albumine-ratio in the normal range in IPF, a normal
concentration of AP and a lowered AP/albumine-ratio in sarcoidosis.
Literatur
1 Costabel U. Atlas der bronchoalveolären Lavage. Stuttgart, New York: Thieme 1994
2
Klech H, Hutter C.
Clinical guidelines and indications for bronchoalveolar lavage: Report of the European
Society of Pneumology Task Group on BAL.
Eur Respir J.
1990;
3
937-974
3
British Thoracic Society, Standards of Care Committee .
The diagnosis, assessment and treatment of diffuse parenchymal lung disease in adults.
British Thoracic Society recommendations.
Thorax.
1999;
54 S1
S1-S24
4
ATS guidelines .
Clinical role of bronchoalveolar lavage in adults with pulmonary disease.
Up to date.
1999;
7: 3
781-800
5
Haslam P, Baugham R.
Guidelines for measurement of acellular components and recommendations for standardization
of bronchoalveolar lavage.
Eur Respir Rev.
1999;
9
66
6
Drent M, Cobben N, Henderson R, Schmitz M, van Dieijen-Visser M.
Measurement of markers of cell damage or death in bronchoalveolar lavage fluid.
Eur Respir Rev.
1999;
9: 66
141-144
7
Bhalla D, Gupta S, Reinhart P.
Alteration of epithelial integrity, alkaline phosphatase activity, and fibronectin
expression in lungs of rats exposed to ozone.
J Toxicol Environ Health.
1999;
57
329-343
8
Capelli A, Cerutti C, Lusuardi M, Donner C.
Identification of human pulmonary alkaline phosphatase isoenzymes.
Am J Respir Crit Care Med.
1997;
155
1448-1452
9
Kallioniemi O, Nieminen M, Lehtinen J, Veneskoski T, Koivula T.
Increased serum placental-like alkaline phosphatase activity in smokers originates
from the lungs.
Eur J Respir Dis.
1987;
71
170-176
10
Henderson R, Scott G, Waide J.
Source of alkaline phosphatase activity in epithelial lining fluid of normal and injured
F344 rat lungs.
Toxicol Appl Pharmacol.
1995;
134
170-174
11
Henderson R, Harkema J, Hotchkiss J, Boehme D.
Effect of blood leukocyte depletion on the inflammatory response of the lungs to quartz.
Toxicol Appl Pharmacol.
1991;
109
127-136
12
Gavett S, Carakostas M, Belcher L, Warheit D.
Effect of circulating neutrophil depletion on lung injury induced by inhaled silica
particles.
J Leukoc Biol.
1992;
51
455-461
13
Warheit D, Carakostas M, Bamberger J, Hartsky M.
Complement facilitates macrophage phagocytosis of inhaled iron particles but has little
effect in mediating silica-induced lung inflammatory and clearance responses.
Environ Res.
1991;
56
186-203
14
Cobben N, Drent M, Jacobs J, Schmitz M, Mulder P, Henderson R, Wouters E, v. Dieijen-Visser M.
Relationship between enzymatic markers of pulmonary cell damage and cellular profile:
a study in bronchoalveolar lavage fluid.
Exp Lung Res.
1999;
25
99-111
15
Warheit D, Hartsky M.
Initiating the risk assessment process for inhaled particulate materials: development
of short term inhalation bioassays.
J Expo Anal Environ Epidemiol.
1997;
7
313-325
16
Dethloff L, Gladen B, Gilmore L, Hook G.
Quantitation of cellular and extracellular constituents of the pulmonary lining in
rats by using bronchoalveolar lavage. Effects of silica-induced pulmonary inflammation.
Am Rev Respir Dis.
1987;
136
899-907
17
Mossmann B, Janssen Y, Marsh J, Sesko A, Shatos M, Doherty J, Adler K, Hemenway D,
Mickey R.
Development and characterization of a rapid-onset rodent inhalation model of asbestosis
for disease prevention.
Toxicol Pathol.
1991;
19
412-418
18
Begin R, Masse S, Rola-Pleszczynski M, Boctor M, Drapeau G.
Asbestos exposure dose-bronchoalveolar milieu response in asbestos workers and the
sheep model: evidences of a treshold for chrysotile-induced fibrosis.
Drug Chem Toxicol.
1987;
10
87-107
19
Lemaire E, Nadeau D, Begin R.
Significant increases of cyclic AMP and alkaline phosphatase in bronchoalveolar lavage
fluids of sheep exposed to asbestos.
Res Commun Chem Pathol Pharmacol.
1981;
33
567-570
20
Bell R, Solimann M, Nonavinakere V, Hammerbeck D, Early J.
Selenium and cadmium induced pulmonary functional impairment and cytotoxicity.
Toxicol Lett.
1997;
90 (2 - 3)
107-114
21
Sendelbach L, Witschi H.
Bronchoalveolar lavage in rats and mice following beryllium sulfate inhalation.
Toxicol Appl Pharmacol.
1987;
90 (2)
322-329
22
Maier K, Beck-Speier I, Dayal N, Dirscherl P, Griese M, Heilmann P, Hinze H, Josten M,
Karg E, Kreyling W, Lenz A, Leuschel L, Meyer B, Miaskowski U, Reitmeier P, Ruprecht L,
Schumann G, Ziesenis A, Heyder J.
Health effects of sulfur-related enviromental air pollution II. Cellular and molecular
parameters of injury.
Inhal Toxicol.
1999;
11
361-389
23
Meulenbelt J, van Bree L, Dormans J, Sangster B.
No benefical effect of n-acetylcystein treatment on bronchoalveolar lavage fluid variables
in acute nitrogen dioxide intoxicated rats.
Hum Exp Toxicol.
1994;
13
472-477
24
Van Klaveren R, Dinsdale D, Pype J, Demedts M, Nemery B.
N-acetylcysteine does not protect against type II cell injury after prolonged exposure
to hyperoxia in rats.
Am J Physiol.
1997;
273
548-555
25
Xie E, Yang Z, Li A.
Determination of placental alkaline phosphatase for detecting the damages of alveolar
type I cells caused bay smoke inhalation.
Chung Hua Cheng Hsing Shao Shang Wai Ko Tsa Chih.
1996;
12 (6)
427-430
26
Kovacikova Z, Ginter E.
Effect of ascorbic acid supplementation during the inhalation exposure of guinea-pigs
to industrial dust on bronchoalveolar lavage and pulmonary enzymes.
J Appl Toxicol.
1995;
15
321-324
27
Salovsky P, Shopova V.
Early biological effects of whole body irradiation on rat lungs.
Radiat Environ Biophys.
1992;
31
331-341
28
Boudreau J, Nadeau D.
Lung hydrolases in paraquat poisoning: early response of alkaline phosphatase.
J Toxicol Environ Health.
1987;
22
329-340
29
Drent M, Cobben N, Henderson R, Jacobs J, Wouters E, v. Dieijen-Visser M.
BAL fluid LDH activity and LDH isooenzyme pattern in lipoid pneumonia caused by an
intravenous injection of lamp oil.
Eur Respir J.
1996;
9
2416-2418
30
Gupta N, Garg U, Dhand R, Kaur A, Ganguly N.
Enzyme levels in bonchoalveolar fluid and serum of active pulmonary tuberculosis patients.
Enzyme.
1989;
41
108-111
31
Capelli A, Lusuardi M, Cerutti C, Donner C.
Lung alkaline phosphatase as a marker of fibrosis in chronic interstitial disorders.
Am J Respir Crit Care Med.
1997;
155
249-253
32
Cobben N, Jacobs J, v. Dieijen-Visser M, Mulder P, Wouters E, Drent M.
Diagnostic value of BAL fluid cellular profile and enzymes in infectious pulmonary
disorders.
Eur Respir J.
1999;
14
496-502
33
Plusa T, Wasek Z.
Immunobiological evaluation of bronchoalveolar lavage (BAL) in atopic bronchial asthma,
chronic bronchitis and bronchiectasis.
Allergol Immunopathol.
1987;
15
209-213
Dr. med J Schildge
St. Vincentius-Krankenhäuser Karlsruhe Medizinische Klinik - Abteilung Pneumologie
Südendstraße 32 76137 Karlsruhe