Summary
Objective
More than 90 % of cervical cancers and precursors are caused by infection with high-risk human papillomavirus (HPV). Cellular immune responses associated with HPV may be detectable in peripheral blood. The purpose of the present study was to assess the immune status in patients with HPV-infection and to identify T cell subsets which may serve as a surrogate marker for immune activation induced bei HPV.
Methods
Subsets of peripheral blood lymphocytes in women (n = 30) without signs of HPV-infection were compared with those of patients with histologically verified HPV-associated cervical intraepithelial neoplasia (CIN) (n = 22) or invasive cervical carcinomas (n = 16) using four-color flow cytometric analysis.
Results
One of the major changes in the T cell repertoire was a significant expansion of T cells characterized by the CD8+ CD45RA+ CD27- CD28- immune phenotype in patients with HPV associated CIN and cancer compared with the control group (p < 0.01 and 0.0001, respectively). This immune phenotype also differed significantly (p < 0.04) between patients with CIN and CC.
Conclusion
The significant T cell response in patients with HPV associated CIN and cancer suggests a proliferative expansion of HPV-antigen-experienced cytotoxic T cells. Further studies are necessary to determine the viral specificity and the validity of lymphocyte subset analysis for monitoring immune function in patients with HPV-associated neoplasia.
Zusammenfassung
Fragestellung
Die Beurteilung des Immunstatus bzw. eines Krankheitsprogresses bei Patienten mit chronischen Virusinfektionen ist oftmals durch die Untersuchung des peripheren Blutes möglich. Mehr als 90 % aller Dysplasien und Neoplasien der Zervix werden durch eine Infektion mit den humanen Papillomaviren vom High-risk-Typ verursacht, welche möglicherweise mit einer spezifischen zellulären Immunantwort verbunden ist. Das Ziel dieser Untersuchung war die Beurteilung des Immunstatus bei HPV-positiven Patientinnen und die Identifizierung eines bestimmten T-Zell-Repertoires, das möglicherweise als Surrogatmarker für eine HPV-spezifische zelluläre Immunaktivierung dienen könnte.
Material und Methodik
Die Subpopulation der peripheren Blutlymphozyten (PBL) von 30 Patientinnen (n = 30) ohne Zeichen einer HPV-Infektion wurden mit denen von Patientinnen mit histologisch gesicherter zervikaler intraepithelialer Neoplasie (CIN) (n = 22) und invasivem Zervixkarzinom (CC) (n = 16) mittels 4-Farben-Durchflusszytometrie verglichen.
Ergebnisse
Als eine signifikante Veränderung im T-Zell-Repertoire fand sich ein Anstieg der CD8 + CD45RA + CD27 - CD28 - T-Zell-Subpopulation bei Patientinnen mit HPV-assoziierter CIN und CC im Vergleich zur Kontrollgruppe (p < 0,01 resp. 0,0001). Selbst zwischen Patienten mit CIN und CC ließ sich ein signifikanter Unterschied in dieser T-Zell-Subpopulation objektivieren (p < 0,04).
Schlussfolgerung
Unsere Untersuchungen zeigen eine signifikante T-Zell-Antwort bei Patientinnen mit HPV-assoziierter Dysplasie bzw. Neoplasie der Cervix uteri in Form einer Proliferation von (HPV) antigen-erfahrenen zytotoxischen T-Lymphozyten-Analysen für das klinische Immunmonitoring bei Patienten mit HPV-assoziierter zervikaler Neoplasie zu belegen.
References
1
Autran B, Carcelain G, Li T S, Blanc C, Mathez D, Tubiana R, Katlana C, Debre P, Leibowitch J.
Positive effects of combined antiretroviral therapy on CD4 + T cell homeostasis and function in advanced HIV disease.
Science.
1997;
277
112
2
Azuma A, Phillips J H, Lanier L.
CD28-lymphocytes. Antigenic and functional properties.
J Immunol.
1993;
150
1147
3
Borthwick N A, Bofill M, Gombert W M, Akbar A N, Medina E, Sagawa K, Lip M C, Johnson M A, Janossy G.
Lymphocyte activation in HIV-I-infection. II. Functional defects of CD28 - T cells.
AIDS.
1994;
8
4312
4
Callan M F, Tan L, Annels N, Og G S, Wilson J D, O'Callaghan C, Steven N, McMichael A J, Rickinson A B.
Direct visualization of antigen-specific CD8 + T cells during the primary immune response to Epstein-Barr virus in vivo.
J Exp Med.
1998;
187 (9)
1395
5
Couedel-Courteille A, Le Grand R, Tulliez M, Guillet J G.
Direct ex vivo simian immunodeficiency virus (SIV)-specific cytotoxic activity detected from small intestine intraepithelial lymphocytes of SIV-infected macawues at an advanced stage of infection.
J Virol.
1997;
71
1052
6
Dutra W O, Martins-Filho O A, Cancado J R, Pinto-Diss J C, Brenner Z, Gazzinelli G, Carvalhi J F, Colloy D G.
Chagasic patients lack CD28 expression on many of their circulation T lymphocytes.
Scand J Immunol.
1996;
43
88
7
Dutton R W, Bradlex L M, Swain S L.
T cell memory.
Annu Rev Immunol.
1998;
16
201
8
Effros R B, Allsopp R, Chiu C P, Hausner M A, Hirji K, Wang L, Harley C B, Villeponteau B, West M D, Giorgi J V.
Shortened telomers in the expanded CD28 - CD8 + cell subset in HIV disease implicate replicatice senecence in HIV pathogenesis.
AIDS.
1996;
10
17
9
Fitzgerald J E, Ricalton N S, Meyer A C, West S G, Kaplan H, Behrendt C, Kotzin B L.
Analysis of clonal CD8 + T cell expansion in normal individuals and patients with rheumatoid arthritis.
J Immunol.
1995;
154
3538
10
Fragoni F F, Vescovini R, Mazzola M, Gologna B, Nigro E, Lavagetto G, Passeri M, Sansoni P.
Expansion of cytotoxic CD8 + CD28 - T cells in healthy ageing people, including centenarians.
Immunology.
1996;
88
501
11
Garin L, Rigal D, Xouillet G, Nemoz C, Bernaud J, Merieux Y, Philippe N.
Allogenic BMT in children: differential lymphocyte subset reconstitution according to the occurrence of acute GVHD.
Immunol Immunopathol.
1995;
77
139
12
Hamann D, Baars P A, Rep M HG, Hooibring B, Garde K, Klein M R, Van Lier R AW.
Phenotype and functional separation of memory and effector human CD8 + T cells.
J Exp Med.
1997;
186
1407
13
Kaneko H, Saito K, Hashimoto H, Yagita H, Okamura K, Azuma M.
Preferential elimination of CD28 + T cells in systemic lupus erythematosus (SLE) and the relation with activation-induced apoptosis.
Clin Exp Immunol.
1996;
106
238
14
Kuroda M J, Schmitz J E, Barouch D H, Craiu A, Allen T M, Sette A, Watkins D I, Forman M A, Letvin N L.
Analysis of Gag-specific cytotoxic T lymphocytes in simian immunodeficiency virus-infected rhesus monkeys by cell staining with a tetrameric major histocompatibility complex class L-peptide complex.
J Exp Med.
1998;
187 (9)
1373
15
Latthe M, Tery L, MacDonald T T.
High frequency of CD8 α homodimer-bearing T cells in human fetal intestine.
Eur J Immunol.
1994;
24
1703
16
Lens S MA, Tesselaar K, van Oers M HJ, van Lier René A W.
Control of lymphocyte function though CD27-CD70 interactions.
Immunol.
1998;
10
491
17
Lynne J E, Schmid I, Matud J L, Hirji K, Buessow S, Shilian D M, Giorgi J V.
Major expansion of select CD8 + subsets in acute Epstein-Barr virus infection: comparison with chronic human immunodeficiency virus disease.
J Infect Dis.
1998;
177
1083
18
Mackall C L, Hakin F T, Gress R E.
Restoration of T cell homeostasis after T cell depletion.
Sem Immunol.
1997;
9
339
19
Merkenschlager M, Beverly P C.
Evidence for differential expression of CD45 isoforms by precursors for memory-dependent and independent cytotoxic response: human CD8 memory CTLp selectively express CD45RO (UCHL 1).
Int Immunol.
1989;
1
450
20
Mollett L, Sadat-Sowti B, Duntze J, Leblond V, Bergeron F, Calvez V, Katlama P, Autran B.
CD8+ CD57+ T lymphocytes are enriched in antigen-specific T cells capable of downmodulating cytotoxic activity.
Int Immunol.
1998;
10
311
21
Montagna D, Arico M, Montini E, De Benedetti F, Maccarlo R.
Identification of HLA-unrestricted CD8 + /CD28 - cytotoxic T-cell clones specific for leukemic blasts in children with acute leukemia.
Cancer Res.
1995;
55
3835
22
Monteiro J, Batliwalla F, Ostrer H, Gregersen P K.
Shortened telomeres in clonally espanded CD28 - CD8 + counterparts.
J Immunol.
1996;
156
3587
23
Monteiro J, Batliwalla F, Ostrer H, Gregersen P K.
Shortened telomere in clonally expanded CD28 - CD8 + T cells imply a replicative history that is distinct from their CD28 + CD8 + counterparts.
J Immunol.
1996;
156
3587
24
Murali-Krishna K, Altman J D, Suresh M, Sourdive D JD, Zajac A J, Miller J D, Slansky J, Ahmed R.
Counting antigen-specific CD8 + cells: a reevaluation of bystander activation during viral infection.
Immunity.
1998;
8 (2)
177
25
Nociari M M, Telford W, Russo C.
Postthymic development of CD-CD8 + T cell subset: age-associated expansion and shift from memory to naive phenotype.
J Immunol.
1999;
15
3327
26
Ohteki T, MacDonald H R.
Expression of the CD28 costimulatory molecule on subsets of murine intestinal intraepithelial lymphocytes correlates with lineage and responsiveness.
Eur J Immunol.
1993;
23
1251
27
Okumura M, Fujii Y, Takeuchi Y, Inada K, Nakahara K, Hatsuda H.
Age-related accumulations of LFA-1 high cells in a CD8+ CD45RAh T cell population.
Eur J Immunol.
1993;
23
1057
28
Posnett D N, Sinha R, Kabak S, Russo C.
Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy” [Published erratum appears in 1994; J Exp Med 179: 1077].
J Exp Med.
1994;
179
609
29
Roederer M, DeRosa S C, Watanabe N, Herzenberg L A.
Dynamics of fine T-cell subsets during disease and after thymic ablation by mediastinal irradiation.
Sem Immunol.
1997;
9
389
30
Rosenberg Y J, Janossy G.
The importance of lymphocyte trafficking in regulating blood lymphocyte levels during HIV and SIV infections.
Immunology.
1999;
11 (Vol)
139
31
Rosenberg Y J, Cafaro A, Brennan T, Greenhouse J G, McKinnon K, Bellah S, Yalley-Ogunro J, Gartner S, Lewis M G.
Characteristics of the CD8 + lymphocytosis during primary simian immunodeficiency virus infection.
AIDS.
1997;
11
959
32
Schwab R, Szabo P, Manavalan J S, Weksler M E, Posnett D N, Pannetier C, Kouribaky P, Even J.
Expanded CD4 + and CD8 + T cell clones in elderly humans.
J Immunol.
1997;
158
4493
33
Sperling A I, Bluestone J A.
The complexities of T-cell co-stimulation: CD28 and beyond.
Immunol Rev.
1996;
153
155
34
Vanham G, Kestens L, Penne G, Goilav C, Gigase P, Colebunders R, Vandenbruaene M, Goertian J, van der Groen G, Ceoppens J L.
Subset markers of CD8 + cells and their relation to enhanced cytotoxic T-cell activity during human immunodeficiency virus infection.
J Clin Immunol.
1991;
11
345
35
Vingerhoets H H, Vanham G L, Kestens L L, Penne G G, Colebundem R L, Vandenbruaene M J, Goeman J, Gigase P L, De Boer M, Ceuppen J L.
Increased cytolytic T lymphocyte activity and decreased B7 responsiveness are associated with CD28 down-regulation on CD8 + cells from HIV-infected subjects.
Clin Exp Immunol.
1995;
100
425
36
Wang E C, Lehner P J, Graham S, Borysiewicz I K.
CD8 high (CD57 +) T cells in normal, healthy individuals specifically suppress the generation of cytotoxic T lymphocytes to Epstein-Barr virus-transformed B cell lines.
Eur J Immunol.
1994;
24
2903
37
Westermann J, Ronneberg S, Joachim Fritz F, Pabst R.
Proliferation of lymphocyte subsets in the adult rat: a comparison of different lymphoid organs.
Eur J Immunol.
1989;
19
1087
38
Westermann J, Pabst R.
Lymphocyte subsets in the blood: a diagnostic window on the lymphoid system?.
Immunol Today.
1990;
11
406
39
Wills M R, Carmichael A J, Weekes M P, Mynard K, Okecha G, Hicks R, Sissons J GP.
Human virus-specific CD8 + CTL clones revert from CD45ROhigh to CD45RAhigh in vivo: CD45RAhigh CD8 + T cells comprise both naive and memory cells.
J Immunol.
1999;
7080
40
zur Hausen H.
Papillomavirus in human cancers.
Molecular Carcinogen.
1988;
1
147
41 zur Hausen H. Papillomaviruses as carcinomaviruses. Klein, G . Advances in Viral Oncology. Tumorigenic DNA Viruses. Vol. 8. New York; Raven Press 1989
M. D. Henryk Pilch
Department of OB/Gyn Mainz Medical Center University of Mainz
Langenbeckstraße 1
55101 Mainz
Germany