Zusammenfassung
Fragestellung: Die Differenzial Display Methode (DD) ist ein neues Screening-Verfahren für unterschiedlich exprimierte Gene auf RNA-Ebene. Wir beschreiben anhand eines neu identifizierten Gens sowie zweier bereits bekannter Gene die Bedeutung der Differenzial Display für die klinisch orientierte onkologische Grundlagenforschung. Methoden/Ergebnisse: Die Differenzial Display Methode basiert auf einem direkten Vergleich der Messenger-RNAs unterschiedlicher Zellpopulationen. Das methodische Grundprinzip der DD ist eine reverse Transkription der mRNA wobei sogenannte Anker-Primer zur Anwendung kommen. Anschließend folgt eine Gen-Amplifikation durch PCR wobei eine Kombination derselben Anker-Primer mit sogenannten Arbitrary-Primern verwendet werden. Neben PCR und reverser Transkription beinhaltet die Differenzial Display Methode grundlegende molekularbiologische Methoden wie RNA-Extraktion (aus klinischem Gewebe oder Zellkulturen), Northern Blot Analysen und Sequenzierungsverfahren. Mittels DD wurden acht unterschiedliche humane Krebszelllinien verglichen (Brust-, Magen-, Kolon-, Lungen-, Uterus- und Mundhöhlenkarzinome, Melanom, Neuroepitheliom). Dabei konnte mit Hilfe eines 18 Basen langen Arbitrary-Primers und eines 21 Basen langen Anker-Primers ein überexprimierter cDNA-Klon innerhalb der MCF 7 Brustkrebszelllinien identifiziert werden. Die anschließenden Subklonierungs- und Sequenzierungsanalysen sowie ein Vergleich mit der Gendatenbank identifizierte eine neue cDNA-Gensequenz von 380 Basenpaaren. Unter Verwendung des cDNA-Klones als radioaktiv markierte Sonde konnte das Ergebnis der DD in Northern-Blot-Analysen in Form einer mRNA-Überexpression in MCF 7 Brustkrebszellen bestätigt werden. Weitere Northern Blots zeigten eine verbreitete Expression des neuen Gens in Brustkrebszellen bei fehlender Expression in mehreren anderen Tumorzelllinien. Die Re-Amplifikation zweier ebenfalls unterschiedlich exprimierter cDNAs identifizierte zwei bereits bekannte Gene. Der eine cDNA-Klon kodiert für das Östrogenrezeptorprotein (ER), der andere Klon zeigte Übereinstimmung mit den kalziumbindenden Proteinen. Schlussfolgerung: Die DD ist eine geeignete Methode sowohl zur Identifikation neuer Gene als auch zum Vergleich unterschiedlich exprimierter Gene in verschiedenen Zellpopulationen. Wir beschreiben anhand der DD-Methode die Identifikation eines neuen, „brustkrebsassoziierten” Genes sowie zweier bereits bekannter jedoch unterschiedlich exprimierter Gene im Vergleich verschiedener humaner Tumorzelllinien.
Abstract
Objective: The differential display method is a new tool to screen for differentially expressed genes at the RNA level. The technique compares the expression of messenger RNAs by different cell populations. It involves reverse transcription of mRNA using an anchored primer design to bind to the poly-A-tail, followed by PCR amplification with an additional upstream arbitrary primer and visualization of the cDNA subpopulation with polyacrylamide gel electrophoresis. We describe the role of the differential display method in identifying a novel gene in human MCF 7 breast cancer cell lines and two previously established but differentially expressed genes.Methods: Gene expression was studied with the differential display method in eight human tumor cell lines (carcinomas of the breast, stomach, colon, lung, uterus, oral cavity and melanoma and neuroepithelioma).Results: Using an 18 bp arbitrary primer with a 21 bp anchored primer we identified a cDNA clone that was overexpressed in MCF 7 breast cancer cell lines. Cloning and sequence analysis of the cDNA clone and comparison with the Genbank/EMBL database identified a novel cDNA sequence of 380 base pairs. Using the cDNA fragment as a probe, Northern analysis was used to verify the differential display results and indicated an approximately 1.5 kb mRNA fragment that was overexpressed in MCF 7 cells. Reamplification of two additionally expressed cDNAs identified known genes, one encoding for the estrogen-receptor protein and the other for a calcium-binding protein. Conclusion: The differential display method is a useful technique to identify new genes and to compare the expression of genes in different cell populations.
Literatur
1
Anisowicz A, Sotiropoulou G, Stenman G, Mok S C, Sager R.
A novel protease homolog differentially expressed in breast and ovarian cancer.
Mol Med.
1996;
5
624-636
2
Barraclough R, Rudland P S.
The S-100-related calcium-binding protein, p9Ka, and metastasis in rodent and human mammary cells.
Eur J Cancer.
1994;
30
1570-1576
3
Carey I, Noti J D.
Isolation of protein kinase C-alpha regulated cDNAs associated with breast tumor aggressiveness by differential mRNA display.
Int J Oncol.
1999;
14
951-956
4
Cowan B D, Hines R S, Brackin M N, Case S T.
Temporal and cell-specific gene expression by human endometrium after coculture with trophoblast.
Am J Obstet Gynecol.
1999;
180
806-814
5
Duan Z, Feller A J, Toh H C, Makastorsis T, Seiden M V.
TRAG-3, a novel gene, isolated from a taxol-resistant ovarian carcinoma cell line.
Gene.
1999;
229
75-81
6
Ferguson A T, Lapidus R G, Davidson N E.
The regulation of estrogen receptor expression and function in human breast cancer.
Cancer Treat Res.
1998;
94
225
7
Fournier M V, Carvalho M G, Pardee A B.
A strategy to identify genes associated with circulating solid tumor cell survival in peripheral blood.
Mol Med.
1999;
5
313-319
8
George K S, Zhao X, Gallahan D, Shirkey A, Zareh A, Esmaeli-Azad B.
Capillary electrophoresis methodology for identification of cancer related gene expression patterns of fluorescent differential display polymerase chain reaction.
J Chrom B Biomed Sci Appl.
1997;
695
93-102
9
Huch G, Hohn H P, Denker H W.
Identification of differentially expressed genes in human trophoblast cells by differential-display RT-PCR.
Placenta.
1998;
19
557-567
10
Husain A, He G, Venkatraman E S, Spriggs D R.
BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum (II).
Can Res.
1998;
15
1120-1123
11
Kirschmann D A, Seftor E A, Nieva D R, Mariano E A, Hendrix M J.
Differential expressed genes associated with the metastatic phenotype in breast cancer.
Br Can Res Treat.
1999;
55
127-136
12
Klotz D M, Castles C G, Fuqua S A, Spriggs L L, Hill S M.
Differential expression of wild-type and variant ER mRNAs by stocks of MCF 7 breast cancer cells may account for differences in estrogen responsiveness.
Biochem Biophys Res Commun.
1995;
210
609-615
13
Kusuhara M, Kimura K, Maass N, Manabe T, Yamaguchi K, Nagasaki K.
Cloning of Hexamethylene inducible transcript, HIS1, in human vascular smooth muscle cells.
Biomed Res.
accepted 10/1999;
14
Lambudova O, Schuller E, Yeghiazarjan K, Kitzmueller E, Hoeger H, Lubec B.
Genes involved in the pathophysiology of perinatal asphyxia.
Life Sci.
1999;
64
1831-1838
15
Lau L, Nathans D.
Identifications of a set of genes expressed.
EMBO.
1985;
4
3145
16
Liang P, Averboukh L, Pardee A B.
Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization.
Nucleic Acid Res.
1993;
21
3269-3275
17
Liang P, Averboukh L, Keyomarsi R, Sager R, Pardee A B.
Differential display and cloning of mRNAs from human breast cancer versus mammary epithelial cells.
Cancer Res.
1992;
52
6966-6968
18
Liang P, Pardee A B.
Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.
Science.
1992;
257
967-971
19
Liang P, Zhu W, Zhang X, Guo Z, O'Connel R P, Averboukh L, Wang F, Pardee A B.
Differential display using one-base anchored oligo-dT primers.
Nucleic Acids Res.
1994;
22
5763-5764
20
Liang P, Pardee A B.
Differential Display. A general protocol.
Mole Biotechn.
1998;
261-267
21
Lee I J, Soh Y, Song B J.
Molecular characterization of fetal alcohol syndrom using mRNA differential display.
Biochem Biophys Res Commun.
1997;
240
309-313
22
Lee S W, Tomasetto C, Sager R.
Positive selection of candidate tumorsuppressor genes by subtractive hybridization.
PNAC.
1991;
88
2825-2829
23
Mou L, Miller H, Li J, Wang E, Chalifour L.
Improvements of the Differential Display method for Gene Analysis.
Bioch and Bioph Res Com.
1994;
199, 2
564
24
Murphy L C, Dotzlav H, Watson P.
The pathophysiological role of estrogen receptor variants in human breast cancer.
J Steroid Biochem Mol Biol.
1998;
65
175-180
25
Nagasaki K, Manabe T, Hanzawa H, Maass N, Yamaguchi K.
Identification of a novel gene, LDOC1, down regulated in cancer cell lines.
Canc Let.
1999;
140
227-234
26
Nagasaki K, Maass N, Yamaguchi K.
Improvement of differential display method (DD).
In Preparation.
;
27
Nagasaki K, Maass N, Manabe T, Hanzawa H, Tsukada T, Kikuchi K, Yamaguchi K.
Identification of a novel gene, DAM1, amplified at chromosome 1p13.3-21 region in human breast cancer cell lines.
Can Let.
1999;
140
219-226
28
Pak B J, Park H, Chang E R, Pang S C, Graham C H.
Differential Display analysis of oxygen-mediated changes in gene expression in first trimester human trophoblast cells.
Placenta.
1998;
19
483-488
29
Prashar Y, Weissman S M.
Analysis of differential gene expression by display of 3′ end restriction fragments of cDNAs.
Proc Natl Acad Sci USA.
1996;
23
659-663
30
Ree A H, Tvermyr M, Engebraaten O, Bruland O S, Fodstad O.
Expression of a novel factor in human breast cancer cells with metastatic potential.
Can Res.
1999;
59
4675-4680
31
Rochefort H, Platet N, Lucas A, Garcia M.
Estrogen receptor mediated inhibition of cancer cell invasion and motility: an overview.
J Steroid Biochem Mol Biol.
1998;
65
163-168
32
Russo J, Yang X, Hu Y F, Russo I H.
Biological and molecular basis of human breast cancer.
Front Biosci.
1998;
1; 3
944-960
33
Sager R, Anisowicz A, Neveu M, Liang P, Sotiropulou.
Identification by differential display of alpha 6 integrin as a candidate tumor suppressor gene.
FASEB J.
1993;
7
964-970
34
Strobl J S, Wonderlin W F, Flym D C.
Mitogenic signal transduction in human breast cancer cells.
Gen Pharmacol.
1995;
26
1643-1649
35
Swisshelm K, Machl A, Kubbies M, Hosier S.
SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membran protein superfamily.
Gene.
1999;
226
285-295
36
Valeron P F, Chirino R, Torres S, Navarro D, Diaz-Chico B N.
Validation of a differential PCR and an ELISA procedure in studying HER-2/neu status in breast cancer.
Int J Cancer.
1996;
65
129-133
37
Yu Y, Xu F, Peng H, Gray J W, Mills G B, Bast R C.
NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas.
Proc Natl Acad Sci.
1999;
96
214-219
38
Zimmermann J W, Schultz R M.
Analysis of gene expression in the preimplantation mouse embryo: use of mRNA differential display.
Proc Natl Acad Sci.
1994;
91
5456-5460
Dr. med. Nicolai Maass
Abt. für Gynäkologie und GeburtshilfeChristian-Albrechts-Universität zu Kiel
Michaelisstraße 16
24105 Kiel
Email: nmaass@uni-kiel.de