Int J Sports Med 2000; 21(2): 96-101
DOI: 10.1055/s-2000-8867
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart ·New York

Comparison of Physiological Strain and Muscular Performance of Athletes During Two Intermittent Running Exercises at the Velocity Associated with V˙O2max

 T. Vourimaa1 ,  T. Vasankari1, 2 ,  H. Rusko3
  • 1 Finnish Sports Institute, Vierumäki, Finland
  • 2 Paavo Nurmi Center, Sports Medical Research Unit and Department of Physiology, University of Turku, Turku, Finland
  • 3 KIHU-Research Institute for Olympic Sports, Jyväskylä, Finland
Further Information

Publication History

Publication Date:
31 December 2000 (online)

The purpose of this study was to examine physiological strain and muscular performance responses of well trained athletes during two intermittent running exercise protocols at the velocity associated with V˙O2max. Ten national level middle-distance runners (V˙O2max 69.4 ± 5.1; mean ± SD) performed in random order two 28 min treadmill running exercises: 14 bouts of 60 s runs with 60 s rest (IR60) and 7 bouts of 120 s runs with120 s rest between each run (IR120). During IR120 peak oxygen uptake (12 %), peak heart rate (3 %) and peak blood lactate (79 %) were significantly higher than during IR60 (P < 0.001) and almost the same as in the V˙O2max test. In IR120 the relative aerobic energy release calculated on the basis of the accumulated oxygen deficit during the running bouts was significantly higher than in IR60 (81.5 ± 2.7 vs. 70.2 ± 2.6 %, P < 0.001) likewise the sum oxygen consumption during the 14 min running (P < 0.001), while during the 14 min recovery it was as much lower (P < 0.001). There were no changes either during or between the IR60 and IR120 protocols with regard to the muscular performance parameters, stride length or height of maximal vertical jumps. In conclusion, during intermittent running at the velocity associated with V˙O2max doubling the duration of work and rest bouts from 60 s to 120 s increased the physiological strain of well trained athletes to the same level as at exhaustion in the V˙O2max test but the muscular performance variables were not influenced.

References

  • 1 Anderson O. To optimize your performance, train “A la Veronique”. Running Res 1994 Nov - Dec: 1-4
  • 2 Åstrand I, Åstrand P-O, Christensen E H, Hedman R. Intermittent muscular work.  Acta Physiol Scand. 1960;  48 448-453
  • 3 Åstrand I, Åstrand P-O, Christensen E H, Hedman R. Myohemoglobin as an oxygen-store in man.  Acta Physiol Scand. 1960;  48 454-460
  • 4 Åstrand P-O. Endurance sports. In: Shephard RJ, Åstrand P-O (eds) Endurance in Sports. Oxford; Blackwell Scientific Publications 1992: 8-10
  • 5 Bangsbo J, Gollnick P D, Graham T E, Juel C, Kiens B, Mizuno M, Saltin B. Anaerobic energy production and O2 deficit-dept relationship during exhaustive exercise in humans.  J Physiol. 1990;  422 539-559
  • 6 Bangsbo J, Graham T E, Johansen L, Strange S, Christensen C, Saltin B. Elevated muscle acidity and energy production during exhaustive exercise in man.  Am J Physiol. 1992;  263 899
  • 7 Bangsbo J, Graham T E, Kiens B, Saltin B. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man.  J Physiol. 1992;  451 205-222
  • 8 Billat V L, Flechet B, Petit B, Muriaux G, Koralsztein J-P. Interval training at V˙O2max: effects on aerobic performance and overtraining markers.  Med Sci Sports Exerc. 1999;  31 156-163
  • 9 Billat V L, Hill D W, Pinoteau J, Petit B, Koralsztein J-P. Effect of protocol on determination of the velocity at V˙O2max and its time to exhaustion. Arch Physiol Biochem 1996: 313-321
  • 10 Billat V, Renoux J C, Pinoteau J, Petit B, Koralsztein J-P. Reproducibility of running time to exhaustion at V˙O2max in subelite runners.  Med Sci Sports Exerc. 1994;  26 254-257
  • 11 Billat V, Renoux J C, Pinoteau J, Petit B, Koralsztein J-P. Times to exhaustion at 90, 100 and 105 % of velocity at V˙O2max (maximal aerobic speed) and critical speed in elite long distance runners.  Arch Physiol Biochem. 1995;  103 129-135
  • 12 Brooks G A. The lactate shuttle during exercise and recovery.  Med Sci Sports Exerc. 1986;  18 360-368
  • 13 Brooks G A. Current concepts in lactate exchange.  Med Sci Sports Exerc. 1991;  23 895-906
  • 14 Chasiotis D. The regulation of glycogen phosphorylase and glycogen breakdown in human skeletal muscle.  Acta Physiol Scand. 1983;  518 1-68
  • 15 Christensen E H, Hedman R, Saltin B. Intermittent and continuous running.  Acta Physiol Scand. 1960;  50 269-287
  • 16 Cooper D M, Barstow T J. Magnetic resonance imaging and spectroscopy in studying exercise in children. In: Holloszy JO (ed) Exercise and Sport Science Reviews, ACSM. Baltimore; Williams & Eilkins 1996
  • 17 Daniels J T, Yarbrough R A, Foster C. Changes in V˙O2max and running performance with training.  Eur J Appl Physiol. 1978;  39 249-254
  • 18 Gastin P B, Costill D K, Lawson D L, Krzeminski K, McConnell G K. Accumulated oxygen deficit during supramaximal, all out and constant intensity exercise.  Med Sci Sports Exerc. 1995;  27 255-263
  • 19 Gastin P B. Quantification of anaerobic capacity.  Scand J Sports. 1994;  4 91-112
  • 20 Gastin P B, Lawson D L. Influence of training status on maximal accumulated oxygen deficit during all-out cycle exercise.  Eur J Appl Physiol. 1994;  69 321-330
  • 21 Gullstrand L, Lawrence S. Heart rate and blood lactate response to short intermittent work at race pace in highly trained swimmers.  Aust J Sci Med Sport. 1987;  19 10-14
  • 22 Hermansen L, Medbø J I. The relative significance of aerobic and anaerobic processes during maximal exercise of short duration.  Med Sci Sports Exerc. 1984;  17 56-67
  • 23 Hill D W, Rowell A L. Responses to exercise at the velocity associated with V˙O2max.  Med Sci Sports Exerc. 1997;  29 113-116
  • 24 Hirvonen J, Rehunen S, Rusko H, Härkönen M. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise.  Eur J Appl Physiol. 1987;  56 253-254
  • 25 Hultman E, Spriet L L. Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans.  J Physiol. 1986;  374 493-501
  • 26 Kavinsky P J, Meyer W L. The effect of pH and temperature on the kinetics of native and altered glycogen phosphorylase.  Arch Biochem Biophys. 1977;  181 616-631
  • 27 Lindsay F H, Hawley J A, Myburgh K H, Schomer H H, Noakes T D, Dennis S C. Improved athletic performance in highly trained cyclists after interval training.  Med Sci Sports Exerc. 1996;  28 1427-1434
  • 28 Mainwood G W, Renaud J M. The effect of acid-base balance on fatigue of skeletal muscle.  Can J Physiol Pharmacol. 1985;  63 403-416
  • 29 Medbø J I, Mohn A-C, Tabata I, Bahr R, Vaage O, Sejersted O M. Anaerobic capacity determined by maximal accumulated O2 deficit.  J Appl Physiol. 1988;  64 50-60
  • 30 Medbø J I, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhaustive bicycle exercise.  J Appl Physiol. 1989;  67 1881-1886
  • 31 Noakes T D, Myburgh K H, Schall R. Peak treadmill running velocity during the V˙O2max test predicts running performance.  J Sports Sci. 1990;  8 35-45
  • 32 Nummela A, Rusko H. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes.  Int J Sports Med. 1995;  16 522-527
  • 33 Paavolainen L, Nummela A, Rusko H. Neuromuscular characteristics and muscle power as determinants of 5 km running performance.  Med Sci Sports Exerc. 1999;  31 124-130
  • 34 Rusko H, Nummela A, Mero A. A new method for the evaluation of anaerobic running power in athletes.  Eur J Appl Physiol. 1993;  66 97-101
  • 35 Spencer M R, Gastin P B, Warren R. Energy system contribution during 400 to 1500 meters running.  New Studies in Athletics, IAAF Quarterly. 1996;  11 59-65
  • 36 Spriet L L, Berardinucci L, Marsh D R, Campell C B, Graham T. Glycogen content has no effect on skeletal muscle glycogenolysis during short-term tetanic stimulation.  J Appl Physiol. 1990;  68 1883-1888
  • 37 Spriet L l, Lindinger M I, McKelvie S, Heigenhauser G JF, Jones N L. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling.  J Appl Physiol. 1989;  66 8-13
  • 38 Swain D P, Abernathy K S, Smith C S, Lee L J, Bunn S A. Target heart rates for the development of cardiorespiratory fitness.  Med Sci Sports Exerc. 1994;  26 112-116
  • 39 Tabata I, Irisawa K, Kouzaki M, Nishimura K, Ogita F, Miyachi M. Metabolic profile of high intensity intermittent exercises.  Med Sci Sports Exerc. 1997;  29 390-395
  • 40 Urhausen A, Coen B, Weiler B, Kindermann W. Individual anaerobic threshold and maximum lactate steady state.  Int J Sports Med. 1993;  14 134-139
  • 41 Vuorimaa T, Karvonen J. Recovery time in interval training for increasing aerobic capacity.  Annals of Sports Medicine (Hollywood, Calif.). 1988;  3 215-219
  • 42 Vuorimaa T, Häkkinen K, Vähäsöyrinki P, Rusko H. Comparison of three maximal anaerobic running test protocols in marathon runners, middle distance runners and sprinters.  Int J Sports Med. 1996;  17 109-113
  • 43 Weltman A, Snead D, Seip R. Percentages of maximal heart rate, heart rate reserve and V˙O2max for determining endurance training intensity in male runners.  Int J Sports Med. 1990;  11 218-222
  • 44 Weltman A, Weltman J, Putt R. Percentages of maximal heart rate, heart rate reserve and V˙O2peak for determining endurance training intensity in sedentary women.  Int J Sports Med. 1989;  10 212-216
  • 45 Withers R, Sherman W, Clark D, Esselbach P C, Nolan S, Mackay M, Brinkman M. Muscle metabolism during 30, 60 and 90 seconds of maximal cycling on an air braked ergometer.  Eur J Appl Physiol. 1991;  63 354-362

Timo Vuorimaa

Finnish Sports Institute

FIN-19120 Vierumäki

Finland

Phone: + 358 (3) 84241004

Fax: + 358 (3) 84241208

Email: timo.vuorimaa@vierumaki.fi