RSS-Feed abonnieren
DOI: 10.1055/s-2000-8935
Neuronale Mechanismen der Narkose
Publikationsverlauf
Publikationsdatum:
31. Dezember 2000 (online)
Zusammenfassung.
Positronenemissionstomographische Studien an Probanden zur Wirkung von Propofol, Halothan und Isofluran haben gezeigt, dass bei Eintritt der Bewusstlosigkeit der Glukosemetabolismus in der Großhirnrinde um ca. 20 - 50 % reduziert ist. Um die Frage zu klären, ob dieser Befund auf eine unmittelbare Hemmung neokortikaler Netzwerke zurückgeführt werden kann, wurden Untersuchungen an isolierten Gehirnschnitten durchgeführt, in denen Nervenzellen der Großhirnrinde, nicht aber subkortikale Strukturen enthalten waren. Es ergab sich eine ausgezeichnete Korrelation zwischen den Konzentrationen, die die Feuerraten von Nervenzellen in Gehirnschnitten auf die Hälfte reduzierten und den Konzentrationen, die von verschiedenen Autoren im Blut von Patienten beim Aufwachen aus der Narkose gemessen wurden. Aus bereits veröffentlichten Untersuchungen an Probanden war des weiteren bekannt, dass Isofluran die Frequenz auditorisch evozierter hochfrequenter neuronaler Oszillationen in der Großhirnrinde halbiert, wenn eine Konzentration verabreicht wird, die etwa 50 % des MAK-Wertes beträgt. Vergleichbare quantitative Wirkungen wurden in Gehirnschnitt-Präparaten beobachtet, in denen hochfrequente Oszillationen neuronaler Aktivität spontan auftraten. Nicht alle Aspekte der zerebralen Wirkung von Allgemeinanästhetika lassen sich jedoch durch eine direkte Hemmung kortikaler Nervenzellen erklären. Die fortschreitende Synchronisation kortikaler Aktivität, die mit zunehmender Narkosetiefe im EEG sichtbar wird, sowie die Unterdrückung der Amplitude auditorisch evozierter Potentiale mittlerer Latenz ist wahrscheinlich auf die Hemmung thalamischer Neurone zurückzuführen. Halothan, Isofluran, Enfluran und Propofol reduzierten die Aktivität kortikaler Neurone in Gehirnschnitten, indem sie die GABAA-Rezeptor-vermittelte synaptische Inhibition verstärkten. Ein ähnlicher molekularer Wirkmechanismus trägt wahrscheinlich auch zur Unterdrückung spinaler Schmerzreflexe bei. Allerdings müssen sich die zerebralen und spinalen Wirkmechanismen von Allgemeinanästhetika unterscheiden. Bildet man das Verhältnis zwischen den Konzentrationen die Bewusstlosigkeit induzieren und jenen die Schmerzreflexe unterdrücken, so erhält man für verschiedene Wirkstoffe deutlich voneinander abweichende Werte.
Neural Mechanisms of Anaesthesia.
Positron emission tomography studies on volunteers showed that, at concentrations inducing the loss of consciousness, propofol, halothane and isoflurane reduce glucose metabolism of neocortical neurones by 20 - 50 %. To find out whether these effects are caused by direct anaesthetic actions on cortical structures, experiments were carried out on isolated neocortical brain slices. In these investigations an excellent correlation was observed between anaesthetic concentrations causing a half-maximal depression of action potential firing in neocortical brain slices and anaesthetic blood concentrations monitored during awaking from anaesthesia in humans. Furthermore, it could be shown that, at concentrations approximately one half the MAC-value, isoflurane decreases the frequency of auditory evoked 30 - 40 Hz oscillations in the neocortex by 50 %. Similar quantitative effects were observed on spontaneously occurring high frequency rhythms in neocortical brain slices. However, not all aspects of cerebral anaesthetic actions can be explained by direct effects on cortical neurones. The EEG synchronisation and the amplitude reduction of mid latency auditory evoked potentials are probably related to the inhibition of thalamic neurones. Halothane, isoflurane, enflurane and propofol reduced action potential firing of cortical neurones by enhancing GABAA receptor-mediated synaptic inhibition. This molecular mechanism seems also to be involved in depressing painful stimuli-induced motor responses. Nevertheless, there must be a difference between relevant anaesthetic mechanisms on the cerebral and spinal level. This follows from the observation that the relation between the concentration causing the loss of consciousness and the concentration that depresses movements considerably varies among different anaesthetic agents.
Schlüsselwörter:
GABAA-Rezeptor - Neokortex - Rückenmark - Allgemeinanästhetika - EEG - Schmerz - Bewusstsein
Key words:
GABAA-receptor - Neocortex - Spinal cord - General anaesthetics - EEG - Pain - Consciousness
Literatur
- 1 Franks N P, Lieb W R. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994; 367 607-614
- 2 Urban B W, Friederich P. Anaesthetic mechanisms in vitro and in general anesthesia. Toxicol Lett. 1998; 100 9-16
- 3 Kissin I. A concept for assessing interactions of general anesthetics. Anesth Analg. 1997; 85 204-210
- 4 Smith C, McEwan A I, Jhaveri R, Wilkinson M, Goodman D, Smith L R, Canada A T, Glass P SA. The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology. 1994; 81 820-828
- 5 Antognini J F, Schwarz K. Exaggerateed anesthetic requirements in the preferentially anesthetized brain. Anesthesiology. 1993; 79 1244-1249
- 6 Antognini J F, Carstens E, Tabo E, Buzin V. Effect of differential delivery of isoflurane to head and torso on lumbar dorsal horn activity. Anesthesiology. 1998; 88 1055-1061
- 7 Rampil I J, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology. 1993; 78 707-712
-
8 Roth G.
Das Gehirn und seine Wirklichkeit. Kognitive Neurobiologie und ihre philosophischen Konsequenzen. Frankfurt; Suhrkamp 1996 - 9 Fritschy J-M, Möhler H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol. 1995; 359 154-194
- 10 McKernan R M, Whiting P J. Which GABAA-receptor subtypes really occur in the brain?. Trends Neurosci. 1996; 19 139-143
- 11 Bormann J. The „ABC” of GABA receptors. Trends Pharmacol Sci. 2000; 21 16-19
- 12 Pearce R A. Physiological evidence for two distinct GABAA responses in rat hippocampus. Neuron. 1993; 10 189-200
- 13 Banks M I, Pearce R A. Kinetic differences between synaptic and extrasynaptic GABAA receptors in CA1 pyramidal cells. J Neurosci. 2000; 20 937-948
- 14 Banks M I, White J A, Pearce R A. Interactions between distinct GABAA circuits in hippocampus. Neuron. 2000; 25 449-457
- 15 Belelli D, Pistis M, Peters J A, Lambert J J. General anaesthetic action at transmitter-gated inhibitory amino acid receptors. Trends Pharmacol Sci. 1999; 20 496-502
- 16 Eckenhoff R G, Johansson J S. On the relevance of “clinically relevant concentrations” of inhaled anesthetics in in vitro experiments. Anesthesiology. 1999; 91 856-860
-
17 Speckmann E-J, Elger C E.
Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer E, Da Silva FL (eds) Electroencephalography. 3. Edition. Baltimore, Hong Kong; Williams & Wilkings 1993: 15-26 - 18 Clark D L, Rosner B S. Neurophysiologic effects on general anesthetics: I. The electroencephalogram and sensory evoked responses in man. Anesthesiology. 1973; 38 564-582
- 19 MacIver M B, Mandema J W, Stanski D R, Bland B H. Thiopental uncouples hippocampal and cortical synchronized electroencephalographic activity. Anesthesiology. 1996; 84 1411-1424
- 20 Steriade M, Contreras D. Relations between cortical and thalamic events during transition from sleep patterns to paroxysmal activity. J Neurosci. 1995; 15 623-642
- 21 McCormick D A, Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci. 1997; 20 185-215
- 22 Detsch O, Vahle-Hinz C, Kochs E, Siemers M, Bromm B. Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer. Brain Res. 1999; 829 77-89
- 23 Maquet P, Degueldre C, Delfiore G, Aerts J, Péters J-M, Luxen A, Franck G. Functional neuroanatomy of human slow wave sleep. J Neurosci. 1997; 17 2807-2812
- 24 Alkire M T, Haier R J, Barker S J, Shah N K, Wu J C, Kao Y J. Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology. 1995; 82 393-403
- 25 Alkire M T, Haier R J, Shah N K, Anderson C T. Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology. 1997; 86 549-557
- 26 Alkire M T. Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers. Anesthesiology. 1998; 89 323-333
- 27 Alkire M T, Pomfrett C JD, Haier R J, Gianzero M V, Chan C M, Jacobsen B P, Fallon J H. Functional brain imaging during anesthesia in humans. Effects of halothane on global and regional glucose metabolism. Anesthesiology. 1999; 90 701-709
- 28 Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, Hajj-Ali N, Backman S B, Evans A C. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci. 1999; 19 5506-5513
- 29 Thornton C. Evoked potentials in anaesthesia. Eur J Anaesth. 1991; 8 89-107
- 30 Schwender D, Daunderer M, Klasing S, Mulzer S, Finsterer U, Peter K. Monitoring intraoperative awareness. Vegetative signs, the isolated forearm technique, the electroencephalogram and auditory evoked potentials. Anaesthesist. 1996; 45 708-721
- 31 Pöppel E. A hierarchical model of temporal perception. Trends Cogn Sci. 1997; 1 56-61
- 32 Schwender D, Faber-Füllig E, Klasing S, Pöppel E, Peter K. Motor signs of wakefulness during general anaesthesia with propofol, isoflurane and flunitrazepam/fentanyl and midlantency auditory evoked potentials. Anaesthesia. 1994; 49 476-484
- 33 Niesert W, Haupts M, Scholz M, Cunitz G. Quantifizierung der postoperativen Vigilanz mittels evozierter Potentiale. Anästhesiol Intensivmed Notfallmed Schmerzther. 1999; 34 269-277
- 34 Plourde G, Baribeau J, Bonhomme V. Ketamine increases the amplitude of the 40-Hz auditory steady-state response in humans. Br J Anaesth. 1997; 78 524-529
- 35 Peterson D O, Drummond J C, Todd M M. Effect of halothane, enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials in humans. Anesthesiology. 1986; 65 35-40
- 36 Sebel P S, Erwin C W, Neville W K. Effects of halothane and enflurane on far and near field somatosensory evoked potentials. Br J Anaesth. 1987; 59 1492-1496
- 37 Koht A, Schütz W, Schmidt G, Schramm J, Watanabe E. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg. 1988; 67 441
- 38 McCormick D A. Neurotransmitter actions in the thalamus and cerebral cortex. J Clin Neurophysiol. 1992; 9 212-223
- 39 Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness?. Trends Pharmacol Sci. 1999; 22 273-280
- 40 Angel A. Central neuronal pathways and the process of anaesthesia. Br J Anaesth. 1993; 71 148-163
- 41 Gähwiler B H. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 1981; 4 329-342
- 42 Gähwiler B H, Capogna M, Debanne D, McKinney R A, Thompson S M. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 1997; 20 471-477
- 43 Klostermann O, Wahle P. Patterns of spontaneous activity and morphology of interneuron types in organotypic cortex and thalamus-cortex cultures. Neuroscience. 1999; 92 1243-1259
- 44 Gabbott P LA, Somogyi P. Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat. Exp Brain Res. 1986; 61 323-331
- 45 Antkowiak B, Helfrich-Förster C. Effects of small concentrations of volatile anesthetics on action potential firing of neocortical neurons in vitro. Anesthesiology. 1998; 88 1592-1602
- 46 Antkowiak B. Different actions of general anaesthetics on the firing patterns of neocortical neurons mediated by the GABAA receptor. Anesthesiology. 1999; 91 500-511
- 47 Hirota K, Lambert D G. Ketamine: its mechanism(s) of action and unusual clinical uses. Br J Anaesth. 1996; 77 441-444
- 48 Detsch O, Kochs E. Effects of ketamine on central nervous system function. Anaesthesist. 1997; 46 S20-S29
- 49 Antkowiak B, Hentschke H. Cellular mechanisms of gamma rhythms in rat neocortical brain slices probed by the volatile anaesthetic isoflurane. Neurosci Lett. 1997; 231 87-90
- 50 Jeffereys J GR, Traub R D, Whittington M A. Neuronal networks for induced “40 Hz” rhythms. Trends Neurosci. 1996; 19 202-208
- 51 Schwender D, Klasing S, Madler C, Pöppel E, Peter K. Mid-latency auditory evoked potentials during ketamine anaesthesia in humans. Br J Anaesth. 1993; 71 629-632
- 52 Bowdle T A, Radant A D, Cowley D S, Kharasch E D, Strassman R J, Roy-Byrne P P. Psychedelic effects of ketamine in healthy volunteers. Anesthesiology. 1998; 88 82-88
- 53 Verma A, Moghaddam B. NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci. 1996; 16 373-379
- 54 Patel I M, Chapin J K. Ketamine effects on somatosensory cortical single neurons and on behavior in rats. Anesth Analg. 1990; 70 635-644
- 55 Kress H G. Neuropharmacological mechanisms of ketamine. Anaesthesist. 1997; 46 S8-S19
- 56 Schubert A, Licina M, Lineberry P J. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide. Anesthesiology. 1990; 72 33-39
- 57 Kalkman C J, Drummond J C, Patel P M, Sano T, Chesnut R M. Effects of droperidol, pentobarbital, and ketamine on myogenic transcranial magnetic motor-evoked responses in humans. Neurosurgery. 1994; 35 1066-1071
- 58 Kalkamn C J, Drummond J C, Ribberink A A, Patel P M, Sano T, Bickford R G. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electric or magnetic stimulation in humans. Anesthesiology. 1992; 76 502-509
- 59 Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997; 17 2921-2927
- 60 Crosby G, Crane A M, Sokoloff L. Local changes in cerebral glucose utilization during ketamine anesthesia. Anesthesiology. 1982; 56 437-443
- 61 Davis D W, Mans A M, Biebuyck J F, Hawkins R A. The influence of ketamine on regional brain glucose use. Anesthesiology. 1988; 69 199-205
- 62 Duncan G H, Dreyer D A, McKenna T M, Whitsel B L. Dose- and time-dependent effects of ketamine on SI neurons with cutaneous receptive fields. J Neurophysiol. 1982; 47 677-699
- 63 Armstrong-James M, Welker E, Callahan C A. The contribution of NMDA and NON-NMDA receptors to fast and slow transmission of sensory information in the rat SI barrel cortex. J Neurosci. 1993; 13 2149-2160
- 64 Perouansky M, Yaari Y. Kinetic properties of NMDA receptor-mediated synaptic currents in rat hippocampal pyramidal cells versus interneurones. J Physiol (Lond). 1993; 465 223-244
- 65 Roskies A L. The binding problem. Neuron. 1999; 24 7-9
- 66 Goldman-Rakic P S. Cellular basis of working memory. Neuron. 1995; 14 447-485
- 67 Flohr H. An information processing theory of anaesthesia. Neuropsychologia. 1995; 33 1169-1180
- 68 Flohr H, Glade U, Motzko D. The role of the NMDA synapse in general anesthesia. Toxicol Lett. 1998; 100 23-29
- 69 Milan M J. The induction of pain: An integrated review. Prog Neurobiol. 1999; 57 1-164
- 70 Rampil I J, King B S. Volatile anesthetics depress spinal motor neurons. Anesthesiology. 1996; 85 129-134
- 71 Friedman Y, King B S, Rampil I J. Nitrous oxide depresses spinal F waves in rats. Anesthesiology. 1996; 85 135-141
- 72 Zhou H H, Jin T-T, Qin B, Turndorf H. Suppression of spinal cord motoneuron excitability correlates with surgical immobility during isoflurane anethesia. Anesthesiology. 1998; 88 955-961
- 73 King B S, Rampil I J. Anesthetic depression of spinal motor neurons may contribute to lack of movement in response to noxious stimuli. Anesthesiology. 1994; 81 1484-1492
- 74 Zhou H H, Mehta M, Leis A. Spinal cord motoneuron excitability during isoflurane and nitrous oxide anesthesia. Anesthesiology. 1997; 86 302-307
- 75 MacIver M B, Tanelian D L. Volatile anesthetics excite mammalian nociceptor afferents recorded in vitro. Anesthesiology. 1990; 72 1022-1030
- 76 De Jong R H, Robles R, Corbin R W, Nace R A. Effect of inhalation anesthetics on monosynaptic and polysynaptic transmission in the spinal cord. J Pharmacol Exp Ther. 1968; 162 326-330
- 77 De Jong R H, Robles R, Morikawa K-I. Actions of halothane and nitrous oxide on dorsal horn neurons (“The spinal gate”). Anesthesiology. 1969; 31 205-212
- 78 De Jong R H, Robles R, Heavner J E. Suppression of impulse transmission in the cat's dorsal horn by inhalation anesthetics. Anesthesiology. 1970; 32 440-445
- 79 Antognini J F, Carstens E. Increasing isoflurane from 0.9 to 1.1 minimum alveolar concentration minimally affects dorsal horn cell responses to noxious stimulation. Anesthesiology. 1999; 90 208-214
- 80 Collins J G, Kendig J J, Mason P. Anesthetic actions within the spinal cord: contributions to the state of general anesthesia. Trends Neurosci. 1995; 18 549-553
- 81 Yanagidani T, Ota K, Collins J G. Complex effects of general anesthesia on sensory processing in the spinal dorsal horn. Brain Res. 1998; 812 301-304
- 82 Gaumann D M, Mustaki J-P, Tassonyi E. MAC-awake of isoflurane, enflurane and halothane evaluated by slow and fast alveolar washout. Br J Anaesth. 1992; 68 81-84
- 83 Katoh T, Sguro Y, Ikeda T, Kazama T, Ikeda K. Influence of age on awaking concentrations of sevoflurane and isoflurane. Anesth Analg. 1993; 76 348-352
- 84 Cousins M J. Pain: The past, present, and future of anesthesiology? The Rovenstine memorial lecture. Anesthesiology. 1999; 91 538-551
- 85 Treede R-D, Kenshalo D R, Gracely R H, Jones A KP. The cortical representation of pain. Pain. 1999; 79 105-111
- 86 Woolf C J, Chong M-S. Preemptive analgesia - Treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg. 1993; 77 362-379
- 87 Woolf C J, Salter M W. Neuronal plasticity: increasing the gain in pain. Science. 2000; 288 1765-1768
- 88 Kieffer B L. Opioids: first lessons from knockout mice. Trends Pharmacol Sci. 1999; 20 19-26
- 89 Bovill J G. Mechanisms of actions of opioids and non-steroidal anti-inflammatory drugs. Eur J Anaesth. 1997; 14 9-15
- 90 Pert A, Yaksh T. Sites of morphine induced analgesia in the primate brain: relation to pain pathways. Brain Res. 1974; 80 135-140
- 91 Tseng L-F, Wei E T, Loh H H, Li C H. β-endorphin: central sites of analgesia, catalepsy and body temperature changes in rats. J Pharmacol Exp Ter. 1980; 214 328-332
- 92 Yaksh T L, Rudy T A. Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J Pharmacol Exp Ther. 1977; 202 411-428
- 93 Yaksh T L, Yeung J C, Rudy T A. Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray. Brain Res. 1976; 114 83-103
- 94 Messlinger K. What is a nociceptor?. Anaesthesist. 1997; 46 142-153
- 95 Stamford J A. Descending control of pain. Br J Anaesth. 1995; 75 217-227
- 96 Koyama N, Hanai F, Yokota T. Does intravenous administration of GABAA receptor antagonists induce both descending antinociception and touch-evoked allodynia?. Pain. 1998; 76 327-336
- 97 Behbehani M M, Jiang M, Chandler S D, Ennis M. The effect of GABA and its antagonists on midbrain periaqueductal gray neurons in the rat. Pain. 1990; 40 195-204
- 98 Vaughan C W, Ingram S L, Connor M A, Christie M J. How opioids inhibit GABA-mediated neurotransmission. Nature. 1997; 390 611-614
- 99 Vaughan C W, Christie M J. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro. J Physiol (Lond). 1997; 498 463-472
- 100 Gear R W, Miaskowski C, Heller P H, Paul S M, Gordon N C, Levine J D. Benzodiazepine mediated antagonism of opioid analgesia. Pain. 1997; 71 25-29
- 101 Reddy S, Patt R B. The benzodiazepines as adjuvant analgesics. J Pain Symptom Manag. 1994; 9 510-514
- 102 Rosland J H, Hole K. 1,4-benzodiazepines antagonize opiate-induced antinociception in mice. Anesth Analg. 1990; 71 242-248
- 103 Goto T, Matota J JA, Crosby G. Pentobarbitone, but not propofol produces pre-emptive analgesia in the rat formalin model. Br J Anaesth. 1994; 72 662-667
- 104 Goto T, Marota J JA, Crosby G. Nitrous oxide induces preemptive analgesia in the rat that is antagonized by halothane. Anesthesiology. 1994; 80 409-416
- 105 Goto T, Marota J JA, Crosby G. Volatile anaesthetics antagonize nitrous oxide and morphine-induced analgesia in the rat. Br J Anaesth. 1996; 76 702-706
- 106 Gain E A, Paletz S G. An attempt to correlate the clinical signs of Fluothane anesthesia with the electroencephalographic levels. Canad Anesth Soc J. 1957; 4 289-294
-
107 Jenkins L C.
Pharmacological effects of general anesthetics on the central nervous system. In: General anesthesia and the central nervous system. Baltimore; Williams & Wilkins 1969: 185-291 - 108 Homi J, Konchigeri H N, Eckenhoff J E, Linde H W. A new anesthetic agent - Forane: preliminary observations in man. Anesth Analg. 1972; 51 439-447
- 109 Madler C, Keller I, Schwender D, Pöppel E. Sensory information processing during general anaesthetics: effect of isoflurane on auditory evoked neuronal oscillations. Br J Anaesth. 1991; 66 81-87
Dr. B. Antkowiak
Max-Planck-Institut für biologische Kybernetik
Spemannstraße 38
72076 Tübingen
eMail: bernd.antkowiak@tuebingen.mpg.de