Endoscopy 2000; 32(12): 921-930
DOI: 10.1055/s-2000-9626
Original Article
© Georg Thieme Verlag Stuttgart · New York

Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett's Esophagus

X. D. Li1 , S. A. Boppart1,2 , ,J.  Van Dam3 , , H.  Mashimo4,5 , , M.  Mutinga6 , , W.  Drexler1 , , M.  Klein7 , , C.  Pitris1,2 , , M. L. Krinsky4 , , M. E.  Brezinski5 , , J. G.  Fujimoto1
  • 1 Dept. of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
  • 2 Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
  • 3 Gastroenterology Division, Stanford University Medical Center, Stanford, California, USA
  • 4 Gastroenterology Division, West Roxbury VA Medical Center,West Roxbury, Massachusetts, USA
  • 5 Dept. of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
  • 6 Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
  • 7 Dept. of Pathology, West Roxbury VA Medical Center, West Roxbury, Massachusetts, USA
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Background and Study Aims: Endoscopic optical coherence tomography (OCT) is an emerging medical technology capable of generating high-resolution cross-sectional imaging of tissue microstructure in situ and in real time. We assess the use and feasibility of OCT for real-time screening and diagnosis of Barrett's esophagus, and also review state-of-the-art OCT technology for endoscopic imaging.

Materials and Methods: OCT imaging was performed as an adjunct to endoscopic imaging of the human esophagus. Real-time OCT (13-μm resolution) was used to perform image-guided evaluation of normal esophagus and Barrett's esophagus. Beam delivery was accomplished with a 1-mm diameter OCT catheter-probe that can be introduced into the accessory channel of a standard endoscope. Different catheter-probe imaging designs which performed linear and radial scanning were assessed. Novel ultrahigh-resolution (1.1-μm resolution) and spectroscopic OCT techniques were used to image in vitro specimens of Barrett's esophagus.

Results: Endoscopic OCT images revealed distinct layers of normal human esophagus extending from the epithelium to the muscularis propria. In contrast, the presence of gland- and crypt-like morphologies and the absence of layered structures were observed in Barrett's esophagus. All OCT images showed strong correlations with architectural morphology in histological findings. Ultrahigh-resolution OCT techniques achieved 1.1-μm image resolution in in vitro specimens and showed enhanced resolution of architectural features. Spectroscopic OCT identified localized regions of wavelength-dependent optical scattering, enhancing the differentiation of Barrett's esophagus.

Conclusions: OCT technology with compact fiberoptic imaging probes can be used as an adjunct to endoscopy for real-time image-guided evaluation of Barrett's esophagus. Linear and radial scan patterns have different advantages and limitations depending upon the application. Ultrahigh-resolution and spectroscopic OCT techniques improve structural tissue recognition and suggest future potential for resolution and contrast enhancements in clinical studies. A new balloon catheter-probe delivery device is proposed for systematic imaging and screening of the esophagus.

References

  • 1 Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography.  Science. 1991;  254 1178-1180
  • 2 Fujimoto J G, Pitris C, Boppart S A, Brezinski M E. Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy.  Neoplasia. 2000;  2 9-25
  • 3 Hee M R, Izatt J A, Swanson E A, et al. Optical coherence tomography of the human retina.  Arch Ophthalmol. 1995;  113 325-332
  • 4 Puliafito C A, Hee M R, Lin C P, et al. Imaging of macular diseases with optical coherence tomography.  Ophthalmology. 1995;  102 217-229
  • 5 Puliafito C A, Hee M R, Schuman J S, Fujimoto J G. Optical coherence tomography of ocular diseases.  Thorofare, New Jersey Slack; 1996
  • 6 Schmitt J M, Knuttel A, Yadlowsky M, Eckhaus M A. Optical coherence tomography of a dense tissue - statistics of attenuation and backscattering.  Phys Med Biol. 1994;  39 1705-1720
  • 7 Schmitt J M, Yadlowsky M, Bonner R F. Subsurface imaging of living skin with optical coherence tomography.  Dermatology. 1995;  191 93-98
  • 8 Fujimoto J G, Brezinski M E, Tearney G J, et al. Optical biopsy and imaging using optical coherence tomography.  Nat Med. 1995;  1 970-972
  • 9 Brezinski M E, Tearney G J, Bouma B E, et al. Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology.  Circulation. 1996;  93 1206-1213
  • 10 Izatt J A, Kulkarni M D, Hsing-Wen W, et al. Optical coherence tomography and microscopy in gastrointestinal tissues.  IEEE J Selected Topics Quantum Electronics. 1996;  2 1017-1028
  • 11 Tearney G J, Brezinski M E, Southern J F, et al. Optical biopsy in human gastrointestinal tissue using optical coherence tomography.  Am J Gastroenterol. 1997;  92 1800-1804
  • 12 Tearney G J, Brezinski M E, Southern J F, et al. Optical biopsy in human pancreatobiliary tissue using optical coherence tomography.  Dig Dis Sci. 1998;  43 1193-1199
  • 13 Kobayashi K, Izatt J A, Kulkarni M D, et al. High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results.  Gastrointest Endosc. 1998;  47 515-523
  • 14 Pitris C, Jesser C, Boppart S A, et al. Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies.  J Gastroenterol. 1999;  35 87-92
  • 15 Tearney G J, Brezinski M E, Bouma B E, et al. In vivo endoscopic optical biopsy with optical coherence tomography.  Science. 1997;  276 2037-2039
  • 16 Boppart S A, Bouma B E, Pitris C, et al. Forward-imaging instruments for optical coherence tomographic imaging.  Opt Lett. 1997;  22 1618-1620
  • 17 Tearney G J, Boppart S A, Bouma B E, et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography.  Opt Lett. 1997;  21 1-3
  • 18 Sergeev A M, Gelikonov V M, Gelikonov G V, et al. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa.  Opt Express. 1997;  1 432-440
  • 19 Bouma B E, Tearney G J. Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography.  Opt Lett. 1999;  24 531-533
  • 20 Rollins A M, Ung-arunyawee R, Chak A, et al. Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design.  Opt Lett. 1999;  24 1358-1360
  • 21 Bouma B E, Tearney G J, Compton C C, Nishioka N S. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography.  Gastrointest Endosc. 2000;  51 467-474
  • 22 Sivak MV J r, Kobayashi K, Izatt J A, et al. High-resolution endoscopic imaging of the gastrointestinal tract using optical coherence tomography.  Gastrointest Endosc. 2000;  51 474-479
  • 23 Phillips R W, Wong R KH. Barrett's esophagus: natural history, incidence, etiology, and complications.  Gastroenterol Clin N Am. 1991;  2 791-815
  • 24 Sampliner R E. Practice guidelines on the diagnosis, surveillance, and therapy of Barrett's esophagus. The Practice Parameters Committee of the American College of Gastroenterology.  Am J Gastroenterol. 1998;  93 1028-1032
  • 25 Falk G W, Rice T W, Goldblum J R, Richter J E. Jumbo biopsy forceps protocol still misses unsuspected cancer in Barrett's esophagus with high-grade dysplasia.  Gastrointest Endosc. 1999;  49 170-176
  • 26 Axon A T. Cancer surveillance in ulcerative colitis - a time for reappraisal.  Gut. 1994;  35 587-589
  • 27 Adrain A L, Ter H -C, Cassidy M J, et al. High-resolution endoluminal sonography is a sensitive modality for the identification of Barrett's metaplasia.  Gastrointest Endosc. 1997;  46 147-151
  • 28 Drexler W, Morgner U, Kartner F X, et al. In vivo ultrahigh-resolution optical coherence tomography.  Opt Lett. 1999;  24 1221-1223
  • 29 Morgner U, Drexler W, Kartner F X, et al. Spectroscopic optical coherence tomography.  Opt Lett. 2000;  25 111-113
  • 30 Perelman L T, Backman V, Wallace M, et al. Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution.  Phys Rev Lett. 1998;  8 627-630
  • 31 Backman V, Gurjar R, Badizadegan K, et al. Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ.  IEEE J Selected Topics Quantum Electronics. 1999;  5 1019-1026
  • 32 Backman V, Wallace M, Perelman L T, et al. Detection of preinvasive cancer cells. Early-warning changes in precancerous epithelial cells can now be spotted in situ.  Nature. 2000;  406 35-36
  • 33 Biddlestone L R, Barham C P, Wilkinson S P, et al. The histopathology of treated Barrett's esophagus: squamous reepithelialization after acid suppression and laser and photodynamic therapy.  Am J Surg Pathol. 1998;  22 239-245
  • 34 Akahoshi K, Chijiwa W, Hamada S, et al. Pretreatment staging of endoscopically early gastric cancer with a 15 MHz ultrasound catheter probe.  Gastrointest Endosc. 1998;  48 542-545

Jacques Van Dam, M.D., Ph.D.

Division of Gastroenterology & Hepatology


Stanford University Medical Center

300 Pasteur Drive - Room H1121 Stanford, California 94305-5202 United States

Fax: Fax:+ 1-650-498-4302