Subscribe to RSS
DOI: 10.1055/s-2001-11608
© Georg Thieme Verlag Stuttgart · New York
Evaluierung eines computerassistierten Diagnosesystems in der Erkennung des Mammakarzinoms
Publication History
Publication Date:
31 December 2001 (online)
Zusammenfassung.
Ziel: Evaluierung eines computerassistierten Diagnosesystems (CAD) für die Mammographie (R2 ImageChecker 1.2). Vergleich der Ergebnisse dreier Radiologen mit und ohne Kenntnis der CAD-Resultate. Material und Methode: Die Mammographiebilder, jeweils beidseits in zwei Ebenen, von 52 Patientinnen mit histologisch verifiziertem Mammakarzinom wurden zunächst vom CAD-System verarbeitet und dann von drei Radiologen unterschiedlichen Ausbildungsgrades in zwei Analysegängen mit und ohne Kenntnis der CAD-Resultate ausgewertet. Ergebnisse: Von den insgesamt 91 Ansichten von Herdbefunden wurden von den drei Radiologen ohne CAD 96 %, 89 %, und 85 % erkannt, mit CAD stiegen diese Werte auf 97 %, 93 % und 96 % an, wobei der Anstieg beim ersten Wert nicht signifikant war. Bei den 49 Arealen maligner Mikrokalzifikationen zeigte sich beim ersten Beobachter ein signifikanter Abfall der Sensitivität, bei den anderen keine signifikante Änderung. Die Sensitivität des Computeralgorithmus alleine betrug für Herdbefunde 74 %, für Mikrokalzifikationen 86 % bei einer Rate von 1,8 falsch positiven Markern pro Bild. Es wurden mit zwei Ausnahmen alle Herdbefunde zumindest in einer Ebene richtig markiert. Schlussfolgerungen: Die Verwendung des CAD-Systems führte bei zwei von drei Radiologen zu einem signifikanten Anstieg der Sensitivität in der Erkennung von Herdbefunden. Bei Mikrokalzifikationen und beim erfahrensten Radiologen brachte die CAD keine signifikante Verbesserung, wobei das größte Problem die hohe Rate falsch positiver Marker ist.
Evaluation of a Computer-Assisted Diagnosis System for Carcinoma of the Breast.
Purpose: Evaluation of a computer-assisted diagnosis (CAD) system (R2 linage Checker 1.2). Comparison of the results of three readers with and without knowledge of the computer results. Materials and methods: The mammograms of 52 patients, bilaterally in two planes each, with histologically proven carcinoma of the breast were included in the study. They were first scanned by the CAD machine and subsequently read by three readers with different degrees of experience in two sessions with and without knowledge of the computer results. Results: Of the 91 views of carcinomas, the readers detected 96 %, 89 %, and 85 %, respectively. With CAD, the values rose to 97 %, 93 %, and 96 %. The increase of the first observer was not significant. As for the 49 areas of malignant microcalcifications, the first reader showed a significant decrease of sensitivity, the other two readers showed no significant change. The sensitivity of CAD was 74 % for masses and 86 % for microcalcifications at a rate of 1.8 false positive markers per image. All but two tumors were correctly marked in at least one plane. Conclusions: Use of the CAD machine led to a significant increase of sensitivity in the detection of malignant masses by two of three observers. In the case of malignant microcalcifications, and for the most experienced observer, CAD did not improve the results. The most important problem is the high rate of false positive markers.
Schlüsselwörter:
Mammographie - Computerassistierte Diagnose - Zweitbefundung - Mammakarzinom
Key words:
Mammography - Computer-assisted diagnosis - Double-reading - Breast carcinoma
Literatur
- 1 Tabar L, Fagerberg C J, Gad A, Baldetorp I, Holmberg L H, Grontoft O, Ljungquist U, Lundstrom B, Manson J C, Eklund G. Reduction in mortality from breast cancer after mass screening with mammography. Lancet. 1985; 1 829-883
- 2 Tabar L, Fagerberg G, Chen H H, et al. Efficacy of breast cancer screening by age: new results from the Swedish two-country atrial. Cancer. 1995; 75 2507-2517
- 3 Shapiro S, Strax P, Venet L. Periodic breast cancer screening in reducing mortality from breast cancer. J Am Med Ass. 1971; 215 1777-1785
- 4 Fracheboud J, de Koning H J, Beemsterboer P MM, et al. Nation-wide breast cancer screening in the Netherlands: results of initial and subsequent screening 1990 - 1995. Int J Cancer. 1998; 75 694-698
- 5 Clay M, Hislop T G, Kann L, et al. Screening Mammography in British Columbia: 1988 - 1993. Am J Surg. 1994; 167 490-492
- 6 Baines C J, Miller A B, Wall C, et al. Sensitivity and specificity of first screen mammography in the Canadian national breast screen study: Preliminary report from five centers. Radiology. 1986; 160 295-298
- 7 Bird R E, Wallace T W, Yankaskas B C. Analysis of cancers missed at screening mammography. Radiology. 1992; 184 613-617
- 8 Thurfjell E L, Lernevall K A, Taube A A. Benefit of independent double reading in a population-based mammography screening program. Radiology. 1994; 191 241-244
- 9 Attinen I, Pamilo M, Soiva M, Roiha M. Double reading of mammography screening films: one radiologist or two?. Clin Radiol. 1993; 48 414-421
- 10 Vyborny C J. Can computers help radiologists read mammograms?. Radiology. 1994; 191 315-317
- 11 Funke M, Netsch T, Breiter N, Biehl M, Peitgen H O, Grabbe E. Computer-assisted visualization of digital mammography images. Fortschr Röntgenstr. 1999; 171 (5) 359-363
- 12 Funke M, Hermann K P, Breiter N, Hundertmark C, Sachs J, Gruhl T, Sperner W, Grabbe E. Digital storage phosphor mammography in a magnification technic: experimental studies for spatial resolution and for detection of microcalcifications. Fortschr Röntgenstr. 1997; 167 (2) 174-179
- 13 Obenauer S, Hermann K P, Schorn C, Funke M, Fischer U, Grabbe E. Full-field digital mammography: a phantom study for detection of microcalcification. Fortschr Röntgenstr. 2000; 172 (7) 646-650
- 14 Schonhofen H, Arnold W, Hess T, Allgayer B. Digital mammography: experiences in its clinical application. Fortschr Röntgenstr. 1998; 169 (1) 45-523
- 15 Wu Y, et al. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology. 1993; 187 81-87
- 16 Funovics M, Schamp S, Lackner B, Wunderbaldinger P, Lechner G, Wolf G. Computerassistierte Diagnose in der Mammographie: Das R2 ImageChecker System in der Detektion spikulierter Läsionen. Wiener Med Wochenschr. 1998; 148 321-324
- 17 Wermuth N, Cochran W G. Detecting systematic errors in multi-clinic observation data. Biometrics. 1979; 35 (3) 683-686
-
18 Fleiss J L.
Statistical methods for rates and proportions. New York; Wiley 1981: 126-133 - 19 Kegelmeyer W P, Pruneda J M, Bourland P D, Hillis A, Riggs M W, Nipper M L. Computer-aided mammographic screening for spiculated lesions. Radiology. 1994; 191 331-337
- 20 Vyborny C J, Giger M L. Computer vision and artificial intelligende in mammography. Am J Roentgenol. 1994; 162 699-708
- 21 Wu Y, et al. Artificial neural networks in mammography: application to decision making in the diagnosis of brest cancer. Radiology. 1993; 187 81-87
- 22 Doi K, Giger M L, Nishikawa R M, Hoffmann K R, MacMahon H, Schmidt R A. Potential usefulness of digital imaging in clinical diagnostic radiology: Computer aided diagnosis. J Digital Imaging. 1995; 8 (1) 2-7
- 23 Nikishawa R M, Giger M L, Doi K, Metz C E, Fang-Fang Y, Vyborny D J, Schmidt R A. Effect of case selection on the performance of computer-aided detection schemes. Med Phys. 1994; 21 265-269
- 24 Warren Burhenne L J, Wood S A, D'Orsi C J, Feig S A, Kopans D B, O'Shaughnessy K F, Sickles E A, Tabar L, Vyborny C J, Castellino R A. Potential contribution of computer-aided detections to the sensitivity of screening mammography. Radiology. 2000; 215 (2) 554-562
- 25 Chan H P, et al. Improvement in Radiologists' detection of Clustered Microcalcifications on Mammograms. Investigative Radiology. 1990; 10 1102-1110
- 26 Jiang Y, et al. Malignant and benign clustered mikrocalcifications: Automated feature analysis and classification. Radiology. 1996; 198 671-678
- 27 Castellino R A, Roehrig J, Zhang W. Improved Computer-aided Detection (CAD) Algorithms for Screening Mammography. RSNA. 2000; J01 821
Dr. Martin Funovics
Universitätsklinik für RadiodiagnostikAKH Wien
Währinger Gürtel 18 - 201090 WienÖsterreich
Phone: + 43-1-40400-7620
Fax: + 43-1-40400-4898
Email: martin_funovics@yahoo.com