Planta Med 2001; 67(3): 236-239
DOI: 10.1055/s-2001-12010
Original Paper

© Georg Thieme Verlag Stuttgart · New York

The Coumarin Osthol Attenuates the Binding of Thyrotropin-Releasing Hormone in Rat Pituitary GH4C1 Cells

Tiina Ojala1 , Pia Vuorela1, 2 , Heikki Vuorela1*, Kid Törnquist3, 4
  • 1 Department of Pharmacy, Division of Pharmacognosy, University of Helsinki, Finland
  • 2 Department of Pharmacy, Viikki Drug Discovery Technology Center, University of Helsinki, Finland
  • 3 Department of Biology, Åbo Akademi University, Turku, Finland
  • 4 The Minerva Foundation Institute for Medical Research, Helsinki, Finland
Weitere Informationen

Publikationsverlauf

April 13, 2000

October 8, 2000

Publikationsdatum:
31. Dezember 2001 (online)

Abstract

The influence of two plant coumarins, osthol and xanthotoxin, on intracellular Ca2+ ([Ca2+]i) transients evoked by TRH were studied in clonal rat pituitary GH4C1 cells. Osthol, but not xanthotoxin, decreased the TRH-induced transient increase in [Ca2+]i in Fluo-3 loaded cells incubated in Ca2+-free buffer. Binding experiments with [3 H]TRH showed that osthol decreased the binding of TRH to its receptor, whereas the affinity of the receptor for TRH increased. This resulted in a decreased TRH-evoked production of IP3 in cells treated with osthol, and a decreased mobilization of sequestered calcium. Osthol did not inhibit the release of calcium evoked by exogenous IP3 in permeabilized cells. Furthermore, osthol decreased the uptake of 45Ca2+ in response to high K+. Xanthotoxin had no effects in these experiments. The results show that osthol modulates TRH-evoked responses by interacting with the TRH receptor.

References

  • 1 O'Kennedy R, Thornes R D, editors. Coumarins: Biology, Applications and Mode of Action. Chichester; John Wiley & Sons Ltd 1997
  • 2 Namba T, Morita O, Huang S L, Goshima K, Hattori M, Kakiuchi N. Studies on cardioactive crude drugs, I: Effect of coumarins on cultured myocardial cells.  Planta Medica. 1988;  54 277-82
  • 3 Vuorela H. Inhibitory activity of Peucedanum palustre on potassium induced contractions of rabbit aortic rings.  Acta Pharmaceutica Fennica. 1988;  97 113-20
  • 4 Vuorela H, Törnquist K, Sticher O, Hiltunen R. Effects of furocoumarins in Peucedanum palustre on prolactin release from GH3 rat pituitary cells.  Acta Pharmaceutica Fennica. 1988;  97 167-74
  • 5 Härmälä P, Vuorela H, Nyiredy Sz, Törnquist K, Kaltia S, Sticher O et al. Strategy for the isolation and identification of coumarins with calcium antagonistic properties from the roots of Angelica archangelica .  Phytochemical Analysis. 1992;  3 42-8
  • 6 Occhiuto F, Circosta C. Antianginal and antiarrythmic effects of bergamottine, a furocoumarin isolated from bergamot oil.  Phytotherapy Research. 1996;  10 491-6
  • 7 Härmälä P, Vuorela H, Törnquist K, Hiltunen R. Choice of solvent in the extraction of Angelica archangelica roots with reference to calcium blocking activity.  Planta Medica. 1992;  58 176-83
  • 8 Kummala T, Vuorela H, Vuorela P, Hiltunen R, Törnquist K. Actions of natural coumarins on calcium entry in rat thyroid FRTL-5 cells.  Pharmaceutical and Pharmacological Letters. 1996;  6 1-4
  • 9 Albert P R, Tashjian Jr. A H. Relationship of thyrotropin-releasing hormone induced spike and plateau phases in cytosolic free Ca2+ concentrations to hormone secretion. Selective blockade using ionomycin and nifedipine.  Journal of Biological Chemistry. 1984;  259 15350-63
  • 10 Härmälä P, Vuorela H, Lehtonen P, Hiltunen R. Optimization of the high-performance liquid chromatography of coumarins in Angelica archangelica with reference to molecular structure.  Journal of Chromatography. 1990;  507 367-80
  • 11 Tashjian A HJr. Clonal strains of hormone-producing pituitary cells.  Methods in Enzymology. 1979;  58 527-35
  • 12 Grynkiewicz G, Poenia M, Tsien R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties.  Journal of Biological Chemistry. 1985;  260 3440-50
  • 13 Karhapää L, Titievsky A, Kaila K, Törnquist K. Redox modulation of calcium entry and release of intracellular calcium by thimerosal in GH4C1 pituitary cells.  Cell Calcium. 1996;  20 447-57
  • 14 Oldham K G. Polyphosphoinositide turnover. In: Hulme EC, editor Oxford; IRL Press, Oxford University Press 1990: 99-116
  • 15 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with the folin phenol reagent.  Journal of Biological Chemistry. 1951;  193 265-75
  • 16 Törnquist K, Tashjian A HJr. Dual actions of 1,25-Dihydroxycholcalciferol on intracellular Ca2+ in GH4C1 cells: evidence for effects on voltage-operated Ca2+ channels and Na+/Ca2+ exchange.  Endocrinology. 1989;  124 2765-75
  • 17 Karhapää L, Törnquist K. Caffeine inhibits the binding of thyrotropin-releasing hormone in GH4C1 pituitary cells.  Biochemical and Biophysical Research Communications. 1995;  210 726-32
  • 18 Simasko S, Horita A. Chlordiazepoxide displaces thyrotropin-releasing hormone (TRH) binding.  European Journal of Pharmacology. 1984;  98 419-23
  • 19 Winicov I, Gershengorn M C. Sphingosine inhibits thyrotropin-releasing hormone binding to pituitary cells by a mechanism independent of protein kinase C.  Journal of Biological Chemistry. 1988;  263 12179-82
  • 20 O'Dowd B F, Lee D K, Huang W, Nguyen T, Cheng R, Liu Y et al. TRH-R2 exhibits similar binding and acute signaling but distinct regulation and anatomic distribution compared with TRH-R1.  Molecular Endocrinology. 2000;  14 183-93

Prof. Dr. Heikki Vuorela

Department of Pharmacy

Division of Pharmacognosy

P.O. Box 56

00014 University of Helsinki

Finland

eMail: heikki.vuorela@helsinki.fi

Fax: +358 9 191 59 138