J Reconstr Microsurg 2001; 17(1): 051-058
DOI: 10.1055/s-2001-12689
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Growth Factor May Decrease Muscle Atrophy Secondary to Denervation

Charles S. Day1 , Felix Riano2 , Matthew M. Tomaino1 , Boonsin Buranatanitkit3 , George Somogyi4 , Dean Sotereanos1 , Johnny Huard2
  • 1Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
  • 2Growth and Development Laboratory, Department of Orthopaedic Surgery, Molecular Genetics and Biochemistry, Children's Hospital, and University of Pittsburgh Medical Center, Pittsburgh Pennsylvania
  • 3Epidemiology Unit, Faculty of Medicine, Prince of Songhkla University, Haadyai, Songkhla, Thailand
  • 4Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Despite modern microsurgical techniques, functional outcomes following brachial-plexus reconstruction and peripheral-nerve repair are usually unsatisfactory, because irreversible muscle atrophy develops before reinnervation occurs. Insulin growth factor-1 (IGF-1) has been shown to improve muscle regeneration after injury, and may have a role in muscle preservation following denervation. This study evaluated the histologic, immunohistochemical, and electrophysiologic differences between normal and denervated muscle over an 8-week time period, and also evaluated the effects of injecting IGF-1 into denervated muscle. Denervated mice gastrocnemius muscles demonstrated a decrease in muscle diameter, a decrease in muscle weight, early nuclear proliferation, and a decrease in fast twitch and maximum tetanic strength, compared to normal gastrocnemius muscle up to 8 weeks following denervation. Four weeks after denervated muscle was injected with IGF-1 at time zero, however, relative preservation of muscle diameter and weight, and maintenance of electrophysiologic contractile properties were observed. These preliminary data suggest that IGF-1 may prevent muscle atrophy secondary to denervation.

REFERENCES

  • 1 Mackinnon S E. Peripheral nerve injuries. In: Manske P (ed): Hand Surgery Update. Rosemont, IL: American Academy of Orthopaedic Surgeons 1998: 233-241
  • 2 Williams H B. The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair: an experimental study.  Microsurgery . 1996;  17 589-596
  • 3 Damon S E, Haugk K L, Birnbaum R S, Quinn L S. Retrovirally mediated over-expression of insulin-like growth factor is required for skeletal muscle differentiation.  J Cell Physiol . 1998;  175 109-120
  • 4 Engert J C, Berlund E B, Rosenthal N. Proliferation precedes differentiation in IGF-1 stimulated myogenesis.  J Cell Bio . 1996;  125 431-440
  • 5 Quinn L S, Haugk K L. Over-expression of the type-1 insulin-like growth factor receptor increases ligand-dependent proliferation and differentiation in bovine skeletal myogenic culture.  J Cell Physio . 1996;  168 34-41
  • 6 Zdanowicz M M, Moyse J, Wingertzahn M A. Effect of insulin-like growth factor 1 in murine muscular dystrophy.  Endocrinology . 1995;  1336 4880-4886
  • 7 Coleman M E, DeMayo F, Yin K C. Myogenic vector expression of insulin-like growth factor- 1 stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice.  J Biol Chem . 1995;  270 12109-12116
  • 8 Kasemkijwattana G, Menetrey J, Somogyi G. Development of approaches to improve healing following muscle contusion.  Cell Transplantation . 1998;  7 585-598
  • 9 Bornemann A, Schmalbruch H. Desmin and vimentin in regenerating muscles.  Muscle Nerve . 1992;  15 14-20
  • 10 Brocks L, Jap P HK, Ramaekers F CC, Stadhouders A M. Vimentin and desmin expression in degenerating and regenerating dystrophic murine muscles.  Virch Arch B Cell Pathol . 1991;  61 89-96
  • 11 Day C S, Kasin M, Floyd Jr S S. Myoblast mediated gene transfer to the joint.  J Ortho Surg . 1997;  15 894-903
  • 12 Engle A G, Stonnington H H. Morphological effects of denervation of muscle: a quantitative ultrastructural study.  Ann NY Acad Sci . 1974;  228 68
  • 13 Engle A G, Bauber B A. Ultrastructural changes in diseased muscle. In: Engel AG, Franzini-Armstrong C (eds): Myology, 2nd ed. NY: McGraw-Hill Inc., 1994, pp 889-1017
  • 14 Nix W A. The effect of low frequency electrical stimulation on the denervated extensor digitorum longus muscle of the rabbit.  Acta Neurol Scand . 1982;  66 521
  • 15 Pachter B R, Eberstein A, Goodgold J. Electrical stimulation effect on denervated skeletal myofibers on rats: a light and electronmicroscopic study.  Arch Phys Med Rehab . 1982;  63 427
  • 16 Williams H B. Electrical stimulation of denervated muscles. In: Omer GE, et al. (eds): Management of Peripheral Nerve Problems. Philadelphia, PA: W.B. Saunders Company 1998: 669-673
  • 17 Williams H B. A clinical pilot study to assess functional return following continuous muscle stimulation after nerve injury and repair in the upper extremity using a completely implantable electrical system.  Microsurgery . 1996;  17 597-605
  • 18 Frostick S P, Yin Q, Kemp G J. Schwann cells neurotrophic factors and peripheral nerve regeneration.  Microsurgery . 1998;  18 397-405
  • 19 Leong J, Hayes A, Austin L, Morrison W. Muscle protection following motor nerve repair in combination with leukemia inhibitory factor.  J Hand Surg . 1999;  24 37-45