J Reconstr Microsurg 2001; 17(4): 267-274
DOI: 10.1055/s-2001-14520
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Development of a Mouse Model for Heterotopic Limb and Composite-Tissue Transplantation

Thomas H. H. Tung1 , Thalachallour Mohanakumar2 , Susan E. Mackinnon1
  • 1Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO
  • 2Department of Surgery, Washington University School of Medicine, St. Louis, MO
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
31. Dezember 2001 (online)

ABSTRACT

The mouse remains the most suitable model to study the complexities of the immune system and transplant rejection. The purpose of this study was to describe a new mouse model for heterotopic limb and composite tissue transplantation. Eighteen procedures were performed, including 10 heterotopic lower hind limb, four vascularized skin, and four vascularized muscle transplantations. Three transplants were allogeneic, and the rest were syngeneic. All successful syngeneic transplants were harvested at 11 days postoperatively, except for one skin and one limb transplant that were followed for over 30 days. The allogeneic transplants showed signs of rejection between 7 to 11 days postoperatively. Results of mixed lymphocyte culture (p < 0.05) and histology evaluations from the allogeneic recipients were consistent with acute rejection as the cause of allograft loss. The mortality rate was 16.7 percent, and the overall success rate was 72.2 percent. Details of the operative procedure are described, and important technical factors are discussed.

REFERENCES

  • 1 Cooley B C, Daley R. Free flap transplantation in mice.  Microsurgery . 1998;  18 320-323
  • 2 Timmerman W, Gassel H-J, Ulrichs K. Organ Transplantation in Rats and Mice.  Berlin: Springer-Verlag 1998
  • 3 Zhang Z, Schlachta C, Duff J. Improved techniques for kidney transplantation in mice.  Microsurgery . 1995;  16 103
  • 4 Koulack J, McAlister V C, Giacomantonio C A. Development of a mouse aortic transplant model of chronic rejection.  Microsurgery . 1995;  16 110-113
  • 5 Squiers E C, Kelley S E, West J C. Small bowel transplantation in the mouse: development of a model.  Microsurgery . 1992;  13 345
  • 6 Zhong R, Zhang Z, Quan D. Development of a mouse intestinal transplantation model.  Microsurgery . 1993;  14 141
  • 7 Doi K. Homotransplantation of limbs in rats.  Plast Reconstr Surgery . 1979;  64 613-621
  • 8 Kim S K, Aziz S, Oyer P, Hentz V R. Use of cyclosporine-A in allotransplantation of rat limbs.  Ann Plast Surg . 1984;  12 249-255
  • 9 Press B HJ, Sibley R K, Shons A R. Limb allotransplantation in the rat: extended survival and return of nerve function with continuous cyclosporine/prednisone immunosuppression.  Ann Plast Surg . 1986;  16 313-321
  • 10 Guzman-Stein A, Shons A R. Functional recovery in the rat limb transplant model: a preliminary study.  Transplantation Proc . 1987;  19 1115-1117
  • 11 Press B HJ, Sibley R K, Shons A R. Modification of experimental limb allograft rejection with cyclosporine and prednisone: a preliminary report.  Transplantation Proc . 1983;  15 3057-3062
  • 12 Kuroki H, Ikuta Y, Akiyama M. Experimental studies of vascularized allogeneic limb transplantation in the rat using a new immunosuppressive agent FK-506: morphological and immunological analysis.  Transplantation Proc . 1989;  21 3187-3190
  • 13 Min Z, Jones N F. Limb transplantation in rats: immunosuppression with FK-506.  J Hand Surg . 1995;  20A 77
  • 14 Jiang J, Humar A, Gracia B, Zhong R. Surgical technique for vascularized ear transplantation in mice.  Microsurgery . 1998;  18 42
  • 15 Zhang F, Shi D Y, Kryger Z. Development of a mouse limb transplantation model.  Microsurgery . 1999;  19 209
  • 16 Billingham R E, Brent L, Medawar P B. ``Actively acquired tolerance'' of foreign cells.  Nature . 1953;  172 603-606
  • 17 Ramsamooj R, Hewitt C W. Vascularized bone marrow transplantation: pathology of composite tissue transplantation-induced graft versus host disease. In: Hewitt CW Black KS (eds): Composite Tissue Transplantation. Austin: R.G. Landes Company 1999
  • 18 Starzl T E, Demetris A J, Murase N. The lost chord: microchimerism and allograft survival.  Immunology Today . 1996;  17 577-584
  • 19 Wood K, Sach D H. Chimerism and transplantation tolerance: cause and effect.  Immunology Today . 1996;  17 584-587
  • 20 Suzuki H, Hewitt C W, Tran H S. Composite tissue/vascularized bone marrow transplantation: a hierarchy of tissue tolerogenicity.  Graft . 1999;  2 111-115
  • 21 Hewitt C W, Black K S, Dowdy S F. Composite tissue (limb) allografts in rats: III. Development of donor-host lymphoid chimeras in long-term survivors.  Transplantation . 1986;  41 39-43
  • 22 Hewitt C W, Ramsamooj R, Patel M. Development of stable mixed T-cell chimerism and transplantation tolerance without immune modulation in recipients of vascularized bone marrow allografts.  Transplantation . 1990;  50 766-772
  • 23 Llull R, Ramsamooj R, Black K S. Cellular mechanisms of alloimmune nonresponsiveness in tolerant mixed lymphocyte chimeras induced by vascularized bone marrow transplants.  Transpl Int . 1994;  7 S543-S546
  • 24 Braam M J, Cooley B C, Gould J S. Topical heparin enhances patency in a rat model of arterial thrombosis.  Ann Plast Surg . 1995;  34 148
  • 25 Jones J W, Gruber S A, Barker J H, Breidenbach W C. Successful hand transplantation: one-year follow-up.  New Eng J Med . 2000;  343 468-473
  • 26 Dubernard J M, Owen E, Herzberg G. Human hand allograft: report on first 6 months.  Lancet . 1999;  53(9161) 1315-1320
  • 27 Yaremchuk M J, Nettelblad H, Randolph M A, Weiland A J. Vascularized bone allograft transplantation in a genetically defined rat model.  Plast Reconstr Surg . 1985;  75 355
  • 28 Best T J, Mackinnon S E, Bain J R. Verification of a free vascularized nerve graft model in the rat with application to the peripheral nerve allograft.  Plast Reconstr Surg . 1993;  92 516