Subscribe to RSS
DOI: 10.1055/s-2001-14564
Succinylation of Tertiary Alcohols under High Pressure
Publication History
Publication Date:
30 September 2004 (online)
Abstract
The efficient succinylation of the sterically hindered tertiary alcohols 1 was performed by reaction with succinic acid monomethyl and monoallyl ester (4a and 4b), respectively, in CH2Cl2 in the presence of dicyclohexylcarbodiimide and 4-(dimethylamino)pyridine under high pressure to give the methyl and allyl succinates 5a and 5b, respectively, in high yields. The succinates 5a,b were efficiently converted into the hemisuccinate 3a by treatment with lithium propyl mercaptide or by palladium(0)-catalyzed deallylation.
Key words
succinates - hemisuccinates - acylation - tertiary alcohols - high pressure
-
1a
Takahashi H.Osada H.Koshino H.Kudo T.Amano S.Shimizu S.Yoshihama M.Isono K. J. Antibiot. 1992, 45: 1409 -
1b
Takahashi H.Osada H.Koshino H.Sasaki M.Onose R.Nakakoshi M.Yoshihama M.Isono K. J. Antibiot. 1992, 45: 1414 -
1c
Koshino H.Takahashi H.Osada H.Isono K. J. Antibiot. 1992, 45: 1420 -
2a
Michael KH.Demarco PV.Nagarajan RJ. J. Antibiot. 1977, 30: 571 -
2b
Arai K.Rawlinga BJ.Yoshizawa Y.Vederas JC. J. Am. Chem. Soc. 1989, 111: 3391 - 3
Koshino H.Kobinata K.Uzawa J.Uramoto M.Isono K.Osada H. Tetrahedron 1993, 49: 8827 -
4a
Yamamoto R.Fujisawa S.Kawamura M. Yakugaku Zasshi 1971, 91: 855 - 5
Israel M.Potti PG.Seshadri R. J. Med. Chem. 1985, 28: 1223 - 6
Tsuchiya T.Takagi Y.Umezawa S.Takeuchi T.Komuro K.Nosaka C.Umezawa H.Fukatsu S.Yoneta T. J. Antibiot. 1988, 41: 988 - 7
Magri NF.Kingston DGI. J. Nat. Prod. 1988, 51: 298 - 8
Deutsch HM.Glinski JA.Hernandez M.Haugwitz RD.Narayanan VL.Suffness M.Zalkow LH. J. Med. Chem. 1989, 32: 788 - 9
Nicolaou KC.Riemer C.Kerr MA.Rideout D.Wrasidlo W. Nature 1993, 364: 464 -
10a
Kita Y.Maeda H.Omori K.Okuno T.Tamura Y. Synlett 1993, 273 -
10b
Kita Y.Maeda H.Takahashi F.Fukui S. J. Chem. Soc., Chem. Commun. 1993, 410 - 11
Saitoh K.Siina I.Mukaiyama T. Chem. Lett. 1998, 679 - 12
Shimizu T.Kobayashi R.Ohmori H.Nakata T. Synlett 1995, 650 - 13
Shimizu T.Kobayashi R.Osako K.Nakata T. Tetrahedron Lett. 1996, 37: 6755 - 14
Shimizu T.Masuda T.Hiramoto K.Nakata T. Org. Lett. 2000, 2: 2153 - 19
Laganis ED.Chenard BL. Tetrahedron Lett. 1984, 25: 5831 - 20
Bartlett PA.Johnson WS. Tetrahedron Lett. 1970, 4459 - 21
Deziel R. Tetrahedron Lett. 1987, 28: 4371 - 22
Tsuji J.Minami I.Shimizu I. Synthesis 1986, 623
References
The alcohol 7 was prepared from the known lactone 6 [13] in two steps:(1)LAH, THF, 0 °C (90%);(2)BOMCl, i-Pr2NEt, CH2Cl2, 0 °C to r. t. (79%). 1H NMR (270 MHz, CDCl3): δ = 0.92 (t, J = 6.7 Hz, 3 H), 1.20-1.80 (m, 10 H), 1.37 (s, 3 H), 1.42 (s, 3 H), 2.03 (s, 1 H), 3.54 (dt, J = 9.6, 6.3 Hz, 1 H), 3.60 (dt, J = 9.6, 6.3 Hz, 1 H), 3.87 (dd, J = 8.2, 7.8 Hz, 1 H), 3.93 (dd, J = 7.8, 6.1 Hz, 1 H), 4.03 (dd, J = 8.2, 6.1 Hz, 1 H), 4.60 (s, 2 H), 4.75 (s, 2 H), 7.25-7.40 (m, 5 H). 13C NMR (67.5 MHz, CDCl3): δ = 14.2, 23.3, 23.5, 25.6, 25.8, 26.5, 31.0, 36.6, 64.6, 68.3, 69.3, 72.7, 79.8, 94.5, 108.7, 127.6, 127.7, 128.3, 128.4, 137.8.
16The alcohol 10 was prepared from the known amide 9 [13] in four steps:(1)DIBAH, Et2O, 0 °C (90%);(2)CBr4, Ph3P, 2,6-lutidine, CH2Cl2, 0 °C (80%);(3)BuLi, THF, -78 °C to r. t. (68%);(4)MeI, NaHCO3, acetone, H2O, 60 °C (83%). 1H NMR (270 MHz, CDCl3): δ = 0.92 (t, J = 6.7, 3 H), 1.22-1.36 (m, 4 H), 1.36 (s, 3 H), 1.42 (s, 3 H), 1.48-1.70 (m, 4 H), 1.97 (dd, J = 2.8, 2.8, 1 H), 2.22 (dddd, J = 16.6, 9.5, 7.2, 2.8, 1 H), 2.34 (dddd, J = 16.6, 9.2, 6.4, 2.8, 1 H), 3.87 (dd, J = 7.9, 7.9, 1 H), 3.97 (dd, J = 7.9, 6.4, 1 H), 4.06 (dd, J = 7.9, 6.4, 1 H). 13C NMR (67.5 MHz, CDCl3): δ = 12.7, 14.2, 23.3, 25.5, 25.9, 26.4, 33.1, 36.2, 62.5, 64.6, 72.9, 79.4, 84.3, 108.9.
17The alcohol 28 was prepared from the enantiomer of the amide 9 [12] using the same procedure for the preparation of 24 [13] : 1H NMR (500 MHz, CDCl3): δ = 0.77 (d, J = 6.4 Hz, 3 H), 0.92 (t, J = 6.9 Hz, 3 H), 1.05 (s, 9 H), 1.20-1.80 (m, 16 H), 2.00 (m, 1 H), 3.36 (ddd, J = 10.1, 101, 2.3 Hz, 1 H), 3.62 (ddd, J = 9.2, 8.7, 6.9 Hz, 1 H), 3.69 (dd, J = 9.6, 6.9 Hz, 1 H), 3.73 (ddd, J = 9.2, 9.2, 5.0 Hz, 1 H), 3.77 (s, 3 H), 3.77 (dd, J = 6.9, 6.0 Hz, 1 H), 3.85 (dd, J = 9.6, 6.9 Hz, 1 H), 4.47 (d, J = 11.5 Hz, 1 H), 4.52 (d, J = 11.5 Hz, 1 H), 6.86 (d, J = 8.7 Hz, 2 H), 7.28 (d, J = 8.7 Hz, 2 H), 7.30-7.80 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 14.2, 17.6, 19.1, 23.4, 24.7, 26.8, 28.0, 29.5, 30.6, 33.4, 33.7, 35.0, 35.1, 55.2, 63.6, 67.3, 71.2, 72.2, 72.8, 74.4, 95.0, 113.8, 127.8, 127.8, 129.3, 129.8, 129.9, 130.8, 132.7, 132.8, 135.6, 135.7, 159.1.
18The reaction of 2-methyl-1-phenylpropan-2-ol with the succinic acid monomethyl ester (4a, 2 equiv), DCC (2.4 equiv) and DMAP (0.1 equiv) in CH2Cl2 at r. t. smoothly proceeded to give the methyl succinate 30 after 4.5 h in 98% yield even under atmospheric pressure: 1H NMR (270 MHz, CDCl3): δ = 1.45 (s, 6 H), 2.56 (m, 4 H), 3.06 (s, 2 H), 3.68 (s, 3 H), 7.15-7.35 (m, 5 H). The allyl succinate 31 was also prepared using the succinic acid monoallyl ester (4b) in the same manner in 96% yield: 1H NMR (270 MHz, CDCl3): δ = 1.44 (s, 6 H), 2.58 (m, 4 H), 3.05 (s, 2 H), 4.59 (ddd, J = 5.6, 1.4, 1.4, 2 H), 5.23 (ddt, J = 10.6, 1.4, 1.4, 1 H), 5.32 (ddt, J = 17.2, 1.4, 1.4, 1 H), 5.91 (ddt, J = 17.2, 10.6, 5.6, 1 H), 7.15-7.35 (m, 5 H).