Zusammenfassung
Die 18 F-Fluorodesoxyglucose-Positronen-Emissions-Tomographie (18 F-FDG-PET) ist ein neueres Verfahren, das besonders gut zur Darstellung von malignen Tumoren geeignet ist. Ziel dieser Studie ist es, die Detektion, das metabolische Verhalten sowie die präoperative lymphonodale Ausbreitung von Zervikarzinomen mittels 18 F-FDG-PET zu prüfen. Es wurden 15 Patientinnen präoperativ mittels PET bei histologisch gesichertem Zervixkarzinom hinsichtlich der Aufnahme von 18 F-FDG des Primärtumors sowie des Vorliegens einer lymphonodalen Metastasierung untersucht. Nach Hysterektomie mit pelviner und in 7 Fällen zusätzlicher paraaortaler Lymphonodektomie erfolgte der Vergleich mit den histopathologischen Ergebnissen. Alle Primärtumoren konnten detektiert werden und wiesen einen mittleren maximalen standardisierten Aufnahmewert (standardized uptake value; SUV) von 8,0 ± 5,3 auf. 3/6 pelvine Lymphknotenmetastasen wurden mit 18 F-FDG-PET gefunden; in zwei der falsch-negativen Fälle lag eine Mikrometastasierung (Metastasengröße ≤ 0,2 cm) vor. In der Untergruppe mit paraaortaler Lymphonodektomie wurde mit PET ein Lymphknotenbefall gesehen, ein zweiter Fall mit Mikrometastasierung nicht. Die diagnostische Treffsicherheit der 18 F-FDG-PET beträgt 73 % für die pelvinen Lymphknotenmetastasen und 86 % für die paraaortalen Lymphknotenmetastasen. Die Detektion von Zervixkarzinomen mittels 18 F-FDG-PET ist somit zuverlässig. Zur Beurteilung einer Lymphknotenmetastasierung kann die PET unabhängig von der Größe der befallenen Lymphknoten eine metabolische Information liefern. Eine Erhöhung der diagnostischen Treffsicherheit ist zu erwarten, wenn eine kombinierte Auswertung der CT/MRT und der PET erfolgt, da sich die Aussagen der morphologischen und metabolischen Methoden ergänzen.
18 F-FDG-Positron-Emission-Tomography in patients with uterine cervical cancer: Preliminary results
Summary
18 F-Fluorodesoxyglucose-Positron-Emission-Tomography (18 F-FDG-PET) is a novel imaging modality for malignancies. This study was initiated to define the efficiency of PET in detecting and characterizing metabolically the primaries and in preoperativly assessing of lymphonodal metastases of cervical cancer. 15 patients with histologically proven cervical carcinoma were studied with 18 F-FDG-PET regarding 18 F-FDG-uptake of primary tumor and evidence as well as extent of lymphonodal metastases. 18 F-FDG-PET and histopathological results were compared after radical hysterectomy with pelvic and supplementary in 7 cases paraaortal lymphadenectomy. All primary tumours showed 18 F-FDG accumulation and had a mean max. SUV of 8.0 ± 5.3. 3/6 lymph node metastases were obtained with 18 F-FDG-PET. Micrometastases (size of metastasis ≤ 0,2 cm) were present in 2 patients with false negative PET results. Regarding the subgroup with paraaortal lymph node dissection, PET detected one patient with metastases, the other one had micrometastasis, while metastasis was not observed by PET. The accuracy of PET is 73 % for assessment of pelvic lymph nodes and 86 % for assessment of paraaortal lymph nodes. In conclusion 18 F-FDG accumulates reliably in primaries of cervical cancer. Regarding assessment of lymph node metastases PET seems to be of potential use, offering metabolic information independent of the size of metastatic lymph nodes. An improvement of accuracy can be expected if combined evaluation of morphologic and metabolic images is performed.
Schlüsselwörter
Zervixkarzinom -
18 F-FDG - Positronen-Emissions-Tomographie (PET) - Lymphknoten-Staging
Key words
Uterine cervical cancer -
18 F-FDG - Positron-Emission-Tomography (PET) - lymph nodes
Literatur
1
Bares R, Klever P, Hauptmann S. et al .
F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer.
Radiology.
1994;
192
79-86
2
Boss E A, Barentsz J O, Massuger L F, Boonstra H.
The role of MR imaging in invasive cervical carcinoma.
Eur Radiol.
2000;
10
256-270
3
Both S A, Schäffer U, Schlenger K H. et al .
18 F-FDG-PET in clinical assessment of primary uterine cervical carcinoma: detection and correlation with tumor oxygen partial pressure.
J Nucl Med.
2000;
41 (abstr)
458-###
4
Brown R S, Leung J Y, Kison P V, Zasadny K R, Flint A, Wahl R L.
Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer.
J Nucl Med.
1999;
40
556-565
5
Delbeke D, Rose D M, Chapman W C. et al .
Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma.
J Nucl Med.
1999;
40
1784-1791
6
Gupta N C, Frank A R, Dewan N A. et al .
Solitary pulmonary nodules: detection of malignancy with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose.
Radiology.
1992;
184
441-444
7
Haberkorn U, Ziegler S I, Oberdorfer F. et al .
FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models.
Nucl Med Biol.
1994;
21
827-834
8
Heller P B, Maletano J H, Bundy B N, Barnhill D R, Okagaki T.
Clinical-pathologic study of stage II B, III, and IV A carcinoma of the cervix: extended diagnostic evaluation for paraaortic node metastasis - a Gynecologic Oncology Group study.
Gynecol Oncol.
1990;
38
425-430
9
Hermanek P, Hutter R V, Sobin L H, Wittekind C.
International Union Against Cancer. Classification of isolated tumor cells and micrometastasis.
Cancer.
1999;
86
2668-2673
10
Horn L C, Riethdorf L, Loning T.
Guidelines for preparation of uterine surgical specimen.
Pathologe.
1999;
20
9-14
11
Höckel M.
Totale mesometriaöe Resektion: Nervenschonende erweitert radikale abdominale Hysterektomie.
Zentralbl Gynakol.
2001;
123
###
12
Hricak H, Yu K K.
Radiology in invasive cervical cancer.
AJR Am J Roentgenol.
1996;
167
1101-1108
13
Hubner K F, Buonocore E, Gould H R, Thie J, Smith G T, Stephens S, Dickey J.
Differentiating benign from malignant lung lesions using „quantitative” parameters of FDG PET images.
Clin Nucl Med.
1996;
21
941-949
14
Keyes J W, Watson N E, Williams D W, Greven K M, McGuirt W F.
FDG PET in head and neck cancer.
Am J Roentgenol.
1997;
169
1663-1669
15
Kühnel G, Börner A R, Döhring J, Weckesser E, Knapp W H.
18 F-FDG-Positronenemissionstomographie in der Entzündungsdiagnostik.
Der Nuklearmediziner.
2000;
23
97-103
16
Miraldi F, Vesselle H, Faulhaber P F, Adler L P, Leisure G P.
Elimination of artifactual accumulation of FDG in PET imaging of colorectal cancer.
Clin Nucl Med.
1998;
23
3-7
17
Morice P, Castaigne D, Pautier P. et al .
Interest of pelvic and paraaortic lymphadenectomy in patients with stage I B and II cervical carcinoma.
Gynecol Oncol.
1999;
73
106-110
18
Oellinger J J, Blohmer J U, Michniewicz K.
Pre-operative staging of cervical cancer: comparison of magnetic resonance imaging (MRI) and computed tomography (CT) with histologic results.
Zentralbl Gynakol.
2000;
122
82-91
19
Reisser C, Eichhorn K, Herold-Mende C, Born A I, Bannasch P.
Expression of facilitative glucose transport proteins during development of squamous cell carcinomas of the head and neck.
Int J Cancer.
1999;
80
194-198
20
Reske S N, Bares R, Bull U, Guhlmann A, Moser E, Wannenmacher M F.
Clinical value of positron emission tomography (PET) in oncologic questions: results of an interdisciplinary consensus conference. Schirmherrschaft der Deutschen Gesellschaft for Nuklearmedizin.
Nuklearmedizin.
1996;
35
42-52
21
Rose P G, Adler L P, Rodriguez M, Faulhaber P F, Abdul-Karim F W, Miraldi F.
Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study.
J Clin Oncol.
1999;
17
41-45
22
Schiepers C, Penninckx F, De Vadder N. et al .
Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging.
Eur J Surg Oncol.
1995;
21
517-522
23
Sokoloff L, Reivich M, Kennedy C.
The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat.
J Neurochem.
1977;
28
897-916
24
Stahl A, Weber W A, Avril N, Schwaiger M.
Einfluss von N-Butylscopolamin auf die intestinale Aufnahme von F-18-Fluordeoxyglucose bei der PET-Untersuchung des Abdomens.
Nuklearmedizin.
2000;
2
A33-###
25
Sugawara Y, Braun D K, Kison P V, Russo J E, Zasadny K R, Wahl R L.
Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results.
Eur J Nucl Med.
1998;
25
1238-1243
26
Sugawara Y, Eisbruch A, Kosuda S, Recker B E, Kison P V, Wahl R L.
Evaluation of FDG PET in patients with cervical cancer.
J Nucl Med.
1999;
40
1125-1131
27
Umesaki N, Tanaka T, Miyama M. et al .
Early diagnosis and evaluation of therapy in postoperative recurrent cervical cancers by positron emission tomography.
Oncol Rep.
2000;
7
53-56
28
Vesselle H J, Miraldi F D.
FDG PET of the retroperitoneum: normal anatomy, variants, pathologic conditions, and strategies to avoid diagnostic pitfalls.
Radiographics.
1998;
18
805-823
29
Yu K K, Forstner R, Hricak K.
Cervical carcinoma: role of imaging.
Abdom Imaging.
1997;
22
208-215
30
Zasadny K R, Wahl R L.
Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction.
Radiology.
1993;
189
847-850
Dr. med. G. Kühnel
Klinik und Poliklinik für Nuklearmedizin Universität Leipzig
Liebigstr. 20 a
D-04103 Leipzig