Horm Metab Res 2001; 33(6): 329-336
DOI: 10.1055/s-2001-15418
Original Basic

© Georg Thieme Verlag Stuttgart · New York

Regulation of Hepatic Glucose Metabolism by Translocation of Glucokinase between the Nucleus and the Cytoplasm in Hepatocytes

Y. Toyoda, A. Tsuchida, E. Iwami, H. Shironoguchi, I. Miwa
  • Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
Further Information

Publication History

Publication Date:
31 December 2001 (online)

We studied the role of glucokinase translocation between the nucleus and the cytoplasm in hepatocytes. In cultured hepatocytes, both the translocation of glucokinase from the nucleus to the cytoplasm and the rate of glucose phosphorylation were increased when cells were incubated with high concentrations of glucose. The addition of low concentrations of fructose, which is known to stimulate glucose phosphorylation, stimulated both glucokinase translocation and glucose phosphorylation. There was a good correlation between the increase in cytoplasmic glucokinase induced by fructose and that in the glucose phosphorylation rate induced by fructose. Furthermore, we observed a linear relationship between cytoplasmic glucokinase activity and rate of glucose phosphorylation over various glucose concentrations in the absence or presence of fructose. These results indicate that glucose phosphorylation in hepatocytes depended on glucokinase in the cytoplasmic compartment - that is, the increase in the rate of glucose phosphorylation was due to the increase in translocation of glucokinase out of the nucleus. Also, oral administration of glucose, fructose, or glucose plus fructose to 24-h fasted rats induced translocation of glucokinase in the liver. All of these results indicate that hepatic glucose metabolism is regulated by the translocation of glucokinase.

References

  • 1 Weinhouse S. Regulation of glucokinase in liver.  Curr Top Cell Regul. 1976;  11 1-50
  • 2 Jetton T L, Liang Y, Pettepher C C, Zimmerman E C, Cox F G, Horvath K, Matschinsky F M, Magnuson M A. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut.  J Biol Chem. 1994;  269 3641-3654
  • 3 Maekawa F, Toyoda Y, Torii N, Miwa I, Thompson R C, Foster D L, Tsukahara S, Tsukamura H, Maeda K. Localization of glucokinase-like immunoreactivity in the rat lower brain stem: for possible location of brain glucose-sensing mechanisms.  Endocrinology. 2000;  141 375-384
  • 4 Matschinsky F M. Glucokinase as glucose sensor and metabolic signal generator in pancreatic β-cells and hepatocytes.  Diabetes. 1990;  39 647-652
  • 5 Printz R L, Magnuson M A, Granner D K. Mammalian glucokinase.  Annu Rev Nutr. 1993;  13 463-496
  • 6 Iynedjian P B. Mammalian glucokinase and its gene.  Biochem J. 1993;  293 1-13
  • 7 Nordlie R C, Foster J D. Regulation of glucose production by the liver.  Annu Rev Nutr. 1999;  19 379-406
  • 8 Froguel P h, Vaxillaire M, Sun F, Velho G, Zouali H, Butel M O, Lesage S, Vionnet N, Clément K, Fougerousse F, Tanizawa Y, Weissenbach J, Beckmann J S, Lathrop G M, Passa P h, Permutt M A, Cohen D. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus.  Nature. 1992;  356 162-164
  • 9 Vionnet N, Stoffel M, Takeda J, Yasuda K, Bell G I, Zouali H, Lesage S, Velho G, Iris F, Passa P h, Froguel P h, Cohen D. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus.  Nature. 1992;  356 721-722
  • 10 Velho G, Petersen K F, Perseghin G, Hwang J -H, Rothman D L, Pueyo M E, Cline G W, Froguel P, Shulman G I. Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects.  J Clin Invest. 1996;  98 1755-1761
  • 11 Tappy L, Dussoix P, Iynedjian P, Henry S, Schneiter P, Zahnd G, Jóquier E, Philippe J. Abnormal regulation of hepatic glucose output in maturity-onset diabetes of the young caused by a specific mutation of the glucokinase gene.  Diabetes. 1997;  46 204-208
  • 12 Bali D, Svethanov A, Lee H -W, DeMane D F, Leiser M, Li B, Barzilai N, Surana M, Hou H, Fleischer N, DePinho R, Rossetti L, Efrat S. Animal model for maturity-onset diabetes of the young generated by disruption of the mouse glucokinase gene.  J Biol Chem. 1995;  270 21 464-21 467
  • 13 Postic C, Shiota M, Niswender K D, Jetton T L, Chen Y, Moates J M, Shelton K D, Lindner J, Cherrington A D. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic ß-cell-specific gene knock-outs using Cre recombinase.  J Biol Chem. 1999;  274 305-315
  • 14 Mevorach M, Giacca A, Aharon Y, Hawkins M, Shamoon H, Rossetti L. Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus.  J Clin Invest. 1998;  102 744-753
  • 15 Basu A, Basu R, Shah P, Vella A, Johnson C M, Nair K S, Jensen M D, Schwenk W F, Rizza R A. Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism. Evidence for a defect in hepatic glucokinase activity.  Diabetes. 2000;  49 272-283
  • 16 Toyoda Y, Miwa I, Kamiya M, Ogiso S, Nonogaki T, Aoki S, Okuda J. Evidence for glucokinase translocation by glucose in rat hepatocytes.  Biochem Biophys Res Commun. 1994;  204 252-256
  • 17 Toyoda Y, Miwa I, Kamiya M, Ogiso S, Nonogaki T, Aoki S, Okuda J. Tissue and subcellular distribution of glucokinase in rat liver and their changes during fasting refeeding.  Histochem Cell Biol. 1995;  103 31-38
  • 18 Toyoda Y, Miwa I, Kamiya M, Ogiso S, Okuda J, Nonogaki T. Changes in subcellular and zonal distribution of glucokinase in rat liver during postnatal development.  FEBS Lett. 1995;  359 81-84
  • 19 Toyoda Y, Ito Y, Miwa I. Translocation of glucokinase between nucleus and cytoplasm in primary cultures of rat hepatocytes.  Diabetologia. 1996;  39 (Suppl. 1) A161
  • 20 Toyoda Y, Ito Y, Yoshie S, Miwa I. Shuttling of glucokinase between the nucleus and the cytoplasm in primary cultures of rat hepatocytes: possible involvement in the regulation of the glucose metabolism.  Arch Histol Cytol. 1997;  60 307-316
  • 21 Toyoda Y, Kobayashi S, Ito Y, Nonogaki T, Miwa I. Nuclear location of glucokinase in mammalian livers.  Med Sci Res. 1997;  25 627-629
  • 22 Brown K S, Kalinowski S S, Megill J R, Durham S K, Mookhtiar K A. Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus.  Diabetes. 1997;  46 179-186
  • 23 de la Iglesia N, Veiga-da-Cunha M, van Schaftingen E, Guinovart J J, Ferrer J C. Glucokinase regulatory protein is essential for the proper subcellular localisation of liver glucokinase.  FEBS Lett. 1999;  456 332-338
  • 24 Fernández-Novell J M, Castel S, Bellido D, Ferrer J C, Vilaró S, Guinovart J J. Intracellular distribution of hepatic glucokinase and glucokinase regulatory protein during the fasted to refed transition in rats.  FEBS Lett. 1999;  459 211-214
  • 25 Agius L, Peak M. Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin.  Biochem J. 1993;  296 785-796
  • 26 Clark D G, Filsell O H, Topping D L. Effects of fructose concentration on carbohydrate metabolism, heat production and substrate cycling in isolated rat hepatocytes.  Biochem J. 1979;  184 501-507
  • 27 van Schaftingen E, Vandercammen A. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes.  Eur J Biochem. 1989;  179 173-177
  • 28 van Schaftingen E, Davies D R. Fructose administration stimulates glucose phosphorylation in the livers of anesthetized rats.  FASEB J. 1991;  5 326-330
  • 29 Fillat C, Gómez-Foix A M, Guinovart J J. Stimulation of glucose utilization by fructose in isolated rat hepatocytes.  Arch Biochem Biophys. 1993;  300 564-569
  • 30 Tanaka K, Sato M, Tomiya Y, Ichihara A. Biochemical studies on liver functions in primary cultured hepatocytes of adult rats.  J Biochem. 1978;  84 937-946
  • 31 Miwa I, Murata T, Okuda J. Alpha- and beta-anomeric preference of glucose-induced insulin secretion at physiological and higher glucose concentrations, respectively.  Biochem Biophys Res Commun. 1991;  180 709-715
  • 32 Miwa I, Mita Y, Murata T, Okuda J, Sugiura M, Hamada Y, Chiba T. Utility of 3-O-methyl-N-acetyl-D-glucosamine, an N-acetylglucosamine kinase inhibitor, for accurate assay of glucokinase in pancreatic islets and liver.  Enz Prot. 1994 - 95;  48 135-142
  • 33 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with the folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 34 Miwa I, Mitsuyama S, Toyoda Y, Nonogaki T, Aoki S, Okuda J. Evidence for the presence of rat liver glucokinase in the nucleus as well as in the cytoplasm.  Biochem Int. 1990;  22 759-767
  • 35 Niculescu L, Veiga-da-Cunha M, van Schaftingen E. Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes.  Biochem J. 1997;  321 239-246
  • 36 Agius L. The physiological role of glucokinase binding and translocation in hepatocytes.  Advan Enzyme Regul. 1998;  38 303-331
  • 37 Agius L, Stubbs M. Investigation of the mechanism by which glucose analogues cause translocation of glucokinase in hepatocytes: evidence for two glucose binding sites.  Biochem J. 2000;  346 413-421
  • 38 Reitz F B, Pagliaro L. Does regulatory protein play a role in glucokinase localization?.  Horm Metab Res. 1997;  29 317-321
  • 39 Murata T, Katagiri H, Ishihara H, Shibasaki Y, Asano T, Toyoda Y, Pekiner B, Pekiner C, Miwa I, Oka Y. Co-localization of glucokinase with actin filaments.  FEBS Lett. 1997;  406 109-113
  • 40 Van Schaftingen E, Detheux M, Veiga-da-Cunha M. Short-term control of glucokinase activity role of a regulatory protein.  FASEB J. 1994;  8 414-419
  • 41 Agius L, Peak M, van Schaftingen E. The regulatory protein of glucokinase binds to the hepatocyte matrix, but, unlike glucokinase, does not translocate during substrate stimulation.  Biochem J. 1995;  309 711-713
  • 42 Toyoda Y, Miwa I, Satake S, Anai M, Oka Y. Nuclear location of the regulatory protein of glucokinase in rat liver and translocation of the regulator to the cytoplasm in response to high glucose.  Biochem Biophys Res Commun. 1995;  215 467-473
  • 43 Carabaza A, Ciudad C J, Baque S, Guinovart J J. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes.  FEBS Lett. 1992;  296 211-214
  • 44 Ciudad C J, Carabaza A, Guinovart J J. Glucose 6-phosphate plays a central role in the activation of glycogen synthase by glucose in hepatocytes.  Biochem Biophys Res Comun. 1986;  141 1195-1200
  • 45 Villar-Palasi C, Guinovart J J. The role of glucose 6-phosphate in the control of glycogen synthase.  FASEB J. 1997;  11 544-558
  • 46 Parry M J, Walker D G. Purification and properties of adenosine 5’-triphosphate-D-glucose 6-phosphotransferase from rat liver.  Biochem J. 1966;  99 266-274
  • 47 Shiota C, Coffey J, Grimsby J, Grippo J F, Magnuson M A. Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase.  J Biol Chem. 1999;  274 37 125-37 130
  • 48 Formerod M, Ohno M, Yoshida M, Mattaj I W. CRM1 is an export receptor for leucine-rich nuclear export signals.  Cell. 1997;  90 1051-1060
  • 49 Mukhtar M, Stubbs M, Agius L. Evidence for glucose and sorbitol-induced nuclear export of glucokinase regulatory protein in hepatocytes.  FEBS Lett. 1999;  462 453-458
  • 50 Toyoda Y, Ito Y, Tanigawa K, Miwa I. Impairment of glucokinase translocation in cultured hepatocytes from OLETF and GK rats, animal models of type 2 diabetes.  Arch Histol Cytol. 2000;  63 243-248

I. Miwa

Department of Pathobiochemistry
Faculty of Pharmacy
Meijo University

Tempaku-ku, Nagoya 468-8503
Japan


Phone: Phone:+ 81-52-832-1871

Fax: Fax:+ 81-52-834-8780

Email: E-mail:miwaichi@meijo-u.ac.jp