Along with traditional pharmacotherapies, extracts of Hypericum perforatum L. (St. John’s wort) are used in the treatment of mild to moderately severe depression. Hypericum is a nonspecific inhibitor of the neuronal uptake of monoamines (serotonin, 5-HT; noradrenaline, NA; dopamine, DA) as well as GABA and glutamate. Hypericum extracts have been shown to be active in several different “animal models for antidepressant drugs”. As one of a large number of chemical constituents, the phoroglucinol derivative hyperforin might be an important “antidepressant component”” of hypericum. However, the exact role of neurochemical mechanisms underlying in vivo actions of hypericum and hyperforin are not well defined. In the present study, we compared the effects of hypericum, hyperforin and hyperforin-free hypericum and the three conventional antidepressants paroxetine, imipramine and desipramine using the passive avoidance (PA) task in the rat. The 5-HT-releasing compound p-chloroamphetamine (PCA), which operates through the 5-HT neuronal transporter, was used to reveal the potential in vivo effects on 5-HT uptake mechanisms. To examine the ability of the test-compounds to enhance noradrenaline (NA) transmission in vivo, subeffective doses of scopolamine were used. Taken together, our results suggest that (1) hypericum given at high doses can probably affect the neuronal 5-HT uptake mechanisms in a manner more reminiscent of TCAs than SSRIs; (2) similar to TCAs and SSRIs, hypericum and hyperforin are active in the scopolamine test. Hyperforin appears to play a major role in the action of hypericum in this model. Both 5-HT and NA might concomitantly contribute to the effects of different antidepressants in the “low-dose scopolamine” model; (3) hypericum might enhance both 5-HT and NA transmission in forebrain limbic brain circuits important for mood control, which could underly its antidepressant effects. However, the relative contribution of different constituents and exact mechanisms of action require further evaluation.
References
1
Ambrogi Lorenzini C G, Baldi E, Bucherelli C, Sacchetti B, Tassoni G.
Analysis of mnemonic processing by means of totally reversible neural inactivations.
Brain Res Brain Res Protoc.
1997;
1
391-398
2
Axt K J, Molliver M E, Qian Y, Blakely R D.
Subtypes of 5-HT axons differ in their expression of serotonin transporter.
Soc Neurosci Abstr.
1995;
21
865
3
Banerjee S P, Kung L S, Riggi S J, Chanda S K.
Development of beta-adrenergic receptor subsensitivity by antidepressants.
Nature.
1977;
268
455-456
4 Barker E L, Blakely R D. Norepinephrine and serotonin transporters. Molecular targets of antidepressant drugs. In: Bloom FE, Kupfer DJ (editors) Psychopharmacology. The fourth generation of progress. New York; Raven Press 1995: 321-333
5
Bel N, Artigas F.
In vivo effects of simultaneous blockade of serotonin and norepinephrine transporters on serotonergic function: Microdialysis studies.
J Pharmacol Exp Ther.
1996;
278
1064-1072
6
Berendsen H HG, Jenck F, Broekkamp C LE.
Selective activation of 5-HT1A receptors induces lower lip retraction in the rat.
Pharmacol Biochem Behav.
1989;
33
821-827
7
Bhattacharya S K, Chakrabarti A, Chatterjee S S.
Activity profiles of two hyperforin-containing hypericum extracts in behavioral models.
Pharmacopsychiatry.
1998;
31
( Suppl 1)
22-29
8
Biegon A, Israeli M.
Regionally selective increases in beta-adrenergic receptor density in the brains of suicide victims.
Brain Res.
1988;
442
199-203
9
Bunney W E, Garland-Bunney B, Patel S B.
Biological markers in depression.
Psychopathology.
1986;
19
72-78
10
Butterweck V, Petereit F, Winterhoff H, Nahrstedt A.
Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test.
Planta Med.
1998;
64
291-294
11
Butterweck V, Wall A, Lieflander-Wulf U, Winterhoff H, Nahrstedt A.
Effects of the total extract and fractions of Hypericum perforatum in animal assays for antidepressant activity.
Pharmacopsychiatry.
1997;
30
( Suppl 2)
117-124
12
Charney D S.
Monoamine dysfunction and the pathophysiology and treatment of depression.
J Clin Psychiatry.
1998;
59
11-14
13
Chatterjee S S, Bhattacharya S K, Wonnemann M, Singer A, Müller W E.
Hyperforin as a possible antidepressant component of hypericum extracts.
Life Sci.
1998;
63
499-510
14
Coppen A.
The biochemistry of affective disorders.
Br J Psychiatry.
1967;
113
1237-1264
15
Cott J M.
In vitro receptor binding and enzyme inhibition by Hypericum perforatum extract.
Pharmacopsychiatry.
1997;
30
( Suppl 2)
108-112
16
Crespi D, Mennini T, Gobbi M.
Carrier-dependent and Ca(2+)-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylendioxymethamphetamine, p- chloroamphetamine and (+)-fenfluramine.
Br J Pharmacol.
1997;
121
1735-1743
17
Daniel W, Adamus A, Melzacka M, Szymura J.
The route of administration of imipramine as a factor affecting formation of its metabolite desipramine.
J Pharm Pharmacol.
1982;
34
678-680
18
Daniel W, Adamus A, Melzacka M, Szymura J, Vetulani J.
Cerebral pharmacokinetics of imipramine in rats after single and multiple dosages.
Naunyn Schmiedebergs Arch Pharmacol.
1981;
317
209-213
19
Daniel W, Melzacka M.
A comparative study on desipramine pharmacokinetics in the rat brain after administration of desipramine or imipramine.
J Pharm Pharmacol.
1992;
44
429-432
20
Daws L C, Lopez R, Frazer A.
Effects of antidepressant treatment on inhibitory avoidance behavior and amygdaloid beta-adrenoceptors in rats.
Neuropsychopharmacology.
1998a;
19
300-313
21
Daws L C, Toney G M, Gerhardt G A, Frazer A.
In vivo chronoamperometric measures of extracellular serotonin clearance in rat dorsal hippocampus: contribution of serotonin and norepinephrine transporters.
J Pharmacol Exp Ther.
1998b;
286
967-976
22
De Paermentier F, Cheetham S C, Crompton M R, Katona C L, Horton R W.
Brain beta-adrenoceptor binding sites in antidepressant-free depressed suicide victims.
Brain Res.
1990;
525
71-77
23
De Paermentier F, Crompton M R, Katona C L, Horton R W.
beta-Adrenoceptors in brain and pineal from depressed suicide victims.
Pharmacol Toxicol.
1992;
71
86-95
24
De Vry J, Maurel S, Schreiber R, de Beun R, Jentzsch K R.
Comparison of hypericum extracts with imipramine and fluoxetine in animal models of depression and alcoholism.
Eur Neuropsychopharmacol.
1999;
9
461-468
25
Decker M W, Curzon P, Brioni J D.
Influence of separate and combined septal and amygdala lesions on memory, acoustic startle, anxiety, and locomotor activity in rats.
Neurobiol Learn Mem.
1995;
64
156-168
26
Decker M W, Gill T M, McGaugh J L.
Concurrent muscarinic and beta-adrenergic blockade in rats impairs place-learning in a water maze and retention of inhibitory avoidance.
Brain Res.
1990;
513
81-85
27
Duncan G E, Paul I A, Breese G R.
Neuroanatomical differences in the rate of beta-adrenergic receptor adaptation after repeated treatment with imipramine.
Psychopharmacol Bull.
1993;
29
401-407
28
Fritze J.
The adrenergic-cholinergic imbalance hypothesis of depression: a review and a perspective.
Rev Neurosci.
1993;
4
63-93
29
Fujii T, Ohba S, Nakai K, Fujimoto K, Suzuki T, Kawashima K.
Enhancement of the serotonin-mediated acetylcholine release by repeated desmethylimipramine treatment in the hippocampus of freely moving rats.
Jpn J Pharmacol.
1999;
80
303-309
30
Gallagher M, Chiba A A.
The amygdala and emotion.
Curr Opin Neurobiol.
1996;
6
221-227
31
Gallagher M, Kapp B S, Musty R E, Driscoll P A.
Memory formation: evidence for a specific neurochemical system in the amygdala.
Science.
1977;
198
423-425
32
Gambarana C, Ghiglieri O, Tolu P, De Montis M G, Giachetti D, Bombardelli E, Tagliamonte A.
Efficacy of an Hypericum perforatum (St. John’s wort) extract in preventing and reverting a condition of escape deficit in rats.
Neuropsychopharmacology.
1999;
21
247-257
33
Golden R N, Potter W Z.
Neurochemical and neuroendocrine dysregulation in affective disorders.
Psychiatr Clin North Am.
1986;
9
313-327
34
Goodnick P J, Goldstein B J.
Selective serotonin reuptake inhibitors in affective disorders - I. Basic pharmacology.
J Psychopharmacol.
1998;
12
S5-S20
35
Grahame-Smith D G.
Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan.
J Neurochem.
1971;
18
1053-1066
36
Gurguis G N, Turkka J, Laruelle M, Kleinman J, Linnoila M.
Coupling efficiency of brain beta-adrenergic receptors to Gs protein in suicide, alcoholism and control subjects.
Psychopharmacology.
1999;
145
31-38
37
Izquierdo I, Medina J H.
Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures.
Neurobiol Learn Mem.
1997;
68
285-316
38
Jacobs B L.
An animal behavior model for studying central serotonergic synapses.
Life Sci.
1976;
19
777-785
39
Kaehler S T, Sinner C, Chatterjee S S, Philippu A.
Hyperforin enhances the extracellular concentrations of catecholamines, serotonin and glutamate in the rat locus coeruleus.
Neurosci Lett.
1999;
262
199-202
40
Kaufmann C A, Gillin J C, Hill B, O’Laughlin T, Phillips I, Kleinman J E, Wyatt R J.
Muscarinic binding in suicides.
Psychiatry Res.
1984;
12
47-55
41
Kim H L, Streltzer J, Goebert D.
St. John’s wort for depression: a meta-analysis of well-defined clinical trials.
J Nerv Ment Dis.
1999;
187
532-538
42 Kirk R E. Experimental design: Procedures for the behavioural sciences. Belmont, CA; Brooks/Cole 1968
43
Lavond D G, Kim J J, Thompson R F.
Mammalian brain substrates of aversive classical conditioning.
Annu Rev Psychol.
1993;
44
317-342
44
Ledoux J E, Müller J.
Emotional memory and psychopathology.
Philos Trans R Soc Lond B Biol Sci.
1997;
352
1719-1726
45
Lester H A, Mager S, Quick M W, Corey J L.
Permeation properties of neurotransmitter transporters.
Annu Rev Pharmacol Toxicol.
1994;
34
219-249
46
Maj J, Melzacka M, Mogilnicka E, Daniel W.
Different pharmacokinetic and pharmacological effects following acute and chronic treatment with imipramine.
J Neural Transm.
1982;
54
219-228
47
Mann J J, Halper J P, Wilner P J, Sweeney J A, Mieczkowski T A, Chen J S, Stokes P E, Brown R P.
Subsensitivity of adenylyl cyclase-coupled receptors on mononuclear leukocytes from drug-free inpatients with a major depressive episode.
Biol Psychiatry.
1997;
42
859-870
48
Meyerson L R, Wennogle L P, Abel M S, Coupet J, Lippa A S, Rauh C E, Beer B.
Human brain receptor alterations in suicide victims.
Pharmacol Biochem Behav.
1982;
17
159-163
49
Misane I, Ögren S O.
Multiple 5-HT receptors in passive avoidance: comparative studies of p-chloroamphetamine and 8-OH-DPAT.
Neuropsychopharmacology.
2000;
22
168-190
50
Müller W E, Rolli M, Schafer C, Hafner U.
Effects of hypericum extract (LI 160) in biochemical models of antidepressant activity.
Pharmacopsychiatry.
1997;
30
( Suppl 2)
102-107
51
Müller W E, Singer A, Wonnemann M, Hafner U, Rolli M, Schafer C.
Hyperforin represents the neurotransmitter reuptake inhibiting constituent of hypericum extract.
Pharmacopsychiatry.
1998;
31
( Suppl 1)
16-21
52
Mulrow C D, Williams J W, Trivedi M, Chiquette E, Aguilar C, Cornell J E, Badgett R, Noel P H, Lawrence V, Lee S, Luther M, Ramirez G, Richardson W S, Stamm K.
Treatment of depression - newer pharmacotherapies.
Psychopharmacol Bull.
1998;
34
409-795
53
Nahrstedt A, Butterweck V.
Biologically active and other chemical constituents of the herb of Hypericum perforatum L.
Pharmacopsychiatry.
1997;
30
( Suppl 2)
129-134
54
Ögren S O.
Central serotonin neurones in avoidance learning: interactions with noradrenaline and dopamine neurones.
Pharmacol Biochem Behav.
1985a;
23
107-123
55
Ögren S O.
Evidence for a role of brain serotonergic neurotransmission in avoidance learning.
Acta Physiol Scand Suppl.
1985b;
544
1-71
56
Okpanyi S N, Weischer M L.
Animal experiments on the psychotropic action of a Hypericum extract.
Arzneimittelforschung.
1987;
37
10-13
57
Ordway G A, Gambarana C, Tejani-Butt S M, Areso P, Hauptmann M, Frazer A.
Preferential reduction of binding of 125 I-iodopindolol to beta-1 adrenoceptors in the amygdala of rat after antidepressant treatments.
J Pharmacol Exp Ther.
1991;
257
681-690
58
Plenge P, Mellerup E T, Laursen H.
Affinity modulation of [3 H]imipramine, [3 H]paroxetine and [3 H]citalopram binding to the 5-HT transporter from brain and platelets.
Eur J Pharmacol.
1991;
206
243-250
59 van Praag H M. Could some depressions be conditioned by derailment of serotonin/cortisol interaction? . In: Palomo T, Beninger RJ, Archer T (editors) Interactive monoaminergic disorders. Madrid; Editorial Sintesis 1999: 91-105
60
Rehavi M, Maayani S, Sokolovsky M.
Tricyclic antidepressants as antimuscarinic drugs: in vivo and in vitro studies.
Biochem Pharmacol.
1977;
26
1559-1567
61 Richelson E. Cholinergic transmission. In: Bloom FE, Kupfer DJ (editors) Psychopharmacology. The fourth generation of progress. New York; Raven Press 1995: 125-134
62
Singer A, Wonnemann M, Müller W E.
Hyperforin, a major antidepressant constituent of St. John’s Wort, inhibits serotonin uptake by elevating free intracellular Na+1 .
J Pharmacol Exp Ther.
1999;
290
1363-1368
63
Snyder S H, Yamamura H I.
Antidepressants and the muscarinic acetylcholine receptor.
Arch Gen Psychiatry.
1977;
34
236-239
64
Stahl S M.
Basic psychopharmacology of antidepressants. Part 1: Antidepressants have seven distinct mechanisms of action.
J Clin Psychiatry.
1998;
59
5-14
65
Stevinson C, Ernst E.
Hypericum for depression. An update of the clinical evidence.
Eur Neuropsychopharmacol.
1999;
9
501-505
66
Suzuki O, Katsumata Y, Oya M, Bladt S, Wagner H.
Inhibition of monoamine oxidase by hypericin.
Planta Med.
1984;
50
272-274
67
Trulson M E, Jacobs B L.
Behavioral evidence for the rapid release of CNS serotonin by PCA and fenfluramine.
Eur J Pharmacol.
1976;
36
149-154
Dr. Ilga Misane
Department of Molecular Neuroendocrinology Max Planck Institute for Experimental Medicine
Hermann Rein Strasse 3
37075 Goettingen
Germany
Phone: +49-551-3899-400
Fax: +49-551-3899-439
Email: Misane@mail.em.mpg.de