Semin Respir Crit Care Med 2001; 22(3): 247-258
DOI: 10.1055/s-2001-15782
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Pathophysiology of Acute Lung Injury

Andreas Günther, Dieter Walmrath, Friedrich Grimminger, Werner Seeger
  • Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, D-35392 Giessen, Germany
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

The acute respiratory distress syndrome (ARDS) is a life-threatening syndrome that may occur in any patient without any predisposition and that is mostly triggered by underlying processes such as sepsis, pneumonia, trauma, multiple transfusions, and pancreatitis. ARDS is defined by (1) acute onset, (2) bilateral infiltrates in chest x-rays, (3) absence of left ventricular failure, and (4) severe arterial hypoxemia with a PaO2/FiO2 ratio less than 200 mmHg. Still, ARDS is feared (mortality 30-40%[1]) and relatively frequent (incidence between 13.5 per 100,000[2] to 75 per 100,000[3]). Acute lung injury (ALI) describes a similar, but less severe, clinical condition, with PaO2/FiO2 values between 200 and 300mmHg. Despite ongoing and intensive scientific research in this area, the mechanisms underlying ALI/ARDS are still not completely understood, and until recently, there were no studies demonstrating any beneficial effect of a single treatment modality in ARDS. The recent report that a specific approach to ventilatory support can significantly reduce mortality in ARDS underscores the need for better understanding of the pathophysiological events occurring in this syndrome. This review therefore summarizes the current pathophysiological concepts underlying the evolution of acute hypoxemic respiratory failure and focuses on: (1) possible reasons for the development of ALI/ARDS; (2) cellular and humoral mediator responses leading to a sustained and self-perpetuating inflammation of the lung; (3) consequences with regard to fluid balance, pulmonary perfusion, ventilation, and efficiency of gas exchange; and (4) mechanisms underlying the aggravating complications commonly seen in ARDS, especially ventilator-associated lung injury, ventilator-associated pneumonia, and lung fibrosis.

REFERENCES

  • 1 The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.  New Engl J Med . 2000;  342 1301-1308
  • 2 Luhr O R, Antonsen K, Karlsson M, the ARF Study Group. Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland.  Am J Respir Crit Care Med . 1999;  159 1849-1861
  • 3 Ware L B, Matthay M A. The acute respiratory distress syndrome.  N Engl J Med . 2000;  342 1334-1349
  • 4 Hudson L D, Milberg J A, Anardi D, Maunder R J. Clinical risks for development of the acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1995;  151 293-301
  • 5 Fein A M, Calalang-Colucci M G. Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock.  Crit Care Clin . 2000;  16 289-317
  • 6 Rahman I, MacNee W. Oxidative stress and regulation of glutathione in lung inflammation.  Eur Respir J . 2000;  16 534-554
  • 7 Abraham E. NF-kappaB activation.  Crit Care Med . 2000;  28 N100-104
  • 8 Rahman I, MacNee W. Role of transcription factors in inflammatory lung diseases.  Thorax . 1998;  53 601-612
  • 9 Shanley T P, Warner R L, Ward P A. The role of cytokines and adhesion molecules in the development of inflammatory injury.  Mol Med Today . 1995;  1 40-45
  • 10 Laufe M D, Simon R H, Flint A, Keller J B. Adult respiratory distress syndrome in neutropenic patients.  Am J Med . 1986;  80 1022-1026
  • 11 Pugin J, Ricou B, Steinberg K P, Suter P M, Martin T R. Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1.  Am J Respir Crit Care Med . 1996;  153 1850-1856
  • 12 Millar A B, Foley N M, Singer M, Johnson N M, Meager A, Rook G A. Tumour necrosis factor in bronchopulmonary secretions of patients with adult respiratory distress syndrome.  Lancet . 1989;  2 712-714
  • 13 Suter P M, Suter S, Giradin P, Roux-Lombard P, Grau G E, Dayer J M. High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-a, interferon and elastase in patients with ARDS after trauma, shock or sepsis.  Am Rev Respir Dis . 1992;  145 1016-1022
  • 14 Hyers E R, Tricomi S M, Dettenmeier P A, Fowler A A. Tumor necrosis factor levels in serum and bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome.  Am Rev Respir Dis . 1991;  144 268-271
  • 15 Rosseau S, Selhorst J, Wiechmann K. Monocyte migration through the alveolar epithelial barrier: adhesion molecule mechanisms and impact of chemokines.  J Immunol . 2000;  164 427-435
  • 16 Seeger W, Walter H, Suttorp N, Muhly M, Bhakdi S. Thromboxane-mediated hypertension and vascular leakage evoked by low doses of Escherichia coli hemolysin in rabbit lungs.  J Clin Invest . 1989;  84 220-227
  • 17 Klausner J M, Paterson I S, Mannick J A, Valeri R, Shepro D, Hechtman H B. Reperfusion pulmonary edema.  JAMA . 1989;  261 1030-1035
  • 18 Seeger W, Grimminger F. Leukotrienes and ARDS.  Intensive Care Med . 1991;  17 65-66
  • 19 Hill M E, Bird I N, Daniels R H, Elmore M A, Finnen M J. Endothelial cell-associated platelet-activating factor primes neutrophils for enhanced superoxide production and arachidonic acid release during adhesion to but not transmigration across IL-1 beta-treated endothelial monolayers.  J Immunol . 1994;  153 3673-3683
  • 20 Grimminger F, Menger M, Becker G, Seeger W. Potentiation of leukotriene production following sequestration of neutrophils in isolated lungs: indirect evidence for intercellular leukotriene A4 transfer.Blood .  1988;  72 1687-1692
  • 21 Grimminger F, von Kurten I, Walmrath D, Seeger W. Type II alveolar epithelial eicosanoid metabolism: predominance of cyclooxygenase pathways and transcellular lipoxygenase metabolism in co-culture with neutrophils.  Am J Respir Cell Mol Biol . 1992;  6 9-16
  • 22 Saldeen T. Clotting, microembolism, and inhibition of fibrinolysis in adult respiratory distress.  Surg Clin North Am . 1983;  63 285-304
  • 23 Grau G E, Moerloose P, Bullao Lou J. Haemostatic properties of human pulmonary and cerebral microvascular endothelial cells.  Thromb Haemost . 1997;  77 585-590
  • 24 Hara S, Asada Y, Hatakeyama K. Expression of tissue factor and tissue factor pathway inhibitor in rat lungs with lipopolysaccharide-induced disseminated intravascular coagulation.  Lab Invest . 1997;  77 581-589
  • 25 Broze G J. Tissue factor pathway inhibitor and the revised theory of coagulation.  Annu Rev Medicine . 1995;  46 103-112
  • 26 Schleef R R, Bevilacqua M P, Sawdey M, Gimbrone M A, Loskutoff D J. Cytokine activation of vascular endothelium: effects on tissue-type plasminogen activator and type 1 plasminogen activator inhibitor.  J Biol Chem . 1988;  263 5797-5803
  • 27 Bajaj M S, Kuppuswamy M N, Manepalli A N, Bajaj S P. Transcriptional expression of tissue factor pathway inhibitor, thrombomodulin and von Willebrand factor in normal human tissues.  Thromb Haemost . 1999;  82 1047-1052
  • 28 MacGregor I R, Perrie A M, Donnelly S C, Haslett C. Modulation of human endothelial thrombomodulin by neutrophils and their release products.  Am J Respir Crit Care Med . 1997;  155 47-52
  • 29 Bhakdi S, Walev I, Jonas D. Pathogenesis of sepsis syndrome: possible relevance of pore-forming bacterial toxins. In: Rietschel ET, Wagner H, eds. Current Topics in Microbiology and Immunology Vol 216. Berlin, Heidelberg: Springer-Verlag 1986: 101-116
  • 30 Ermert L, Duncker H-R, Brückner H. Ultrastructural changes of lung capillary endothelium in response to botulinum C2 toxin.  J Appl Physiol . 1997;  82 382-388
  • 31 Wiener-Kronish J P, Albertine K H, Matthay M A. Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin.  J Clin Invest . 1991;  88 864-875
  • 32 Yano T, Mason R J, Pan T, Deterding R R, Nielsen L D, Shannon J M. KGF regulates pulmonary epithelial proliferation and surfactant protein gene expression in adult rat lung.  Am J Physiol Lung Cell Mol Physiol . 2000;  279 L1146-1158
  • 33 Seeger W, Neuhof H, Hall J, Roka L. Pulmonary vasoconstrictor response to soluble fibrin in isolated lungs: possible role of thromboxane generation.  Circ Res . 1988;  62 651-659
  • 34 Griese M. Pulmonary surfactant in health and human lung diseases: state of the art.  Eur Respir J . 1999;  13 1455-1476
  • 35 Jobe A H, Ikegami M. Surfactant and acute lung injury.  Proc Assoc Am Physicians . 1998;  110 489-495
  • 36 Weaver T E. Synthesis, processing and secretion of surfactant proteins B and C.  Biochim Biophys Acta . 1998;  1408 173-179
  • 37 Goerke J. Pulmonary surfactant: functions and molecular composition.  Biochim Biophys Acta . 1998;  1408 79-89
  • 38 Possmayer F. Biophysical activities of pulmonary surfactant. In: Polin RA, Fox WW, eds. Fetal and neonatal physiology Philadelphia: WB Saunders 1991: 959-962
  • 39 Krishnasamy S, Gross N J, Teng A L, Schultz R M, Dhand R. Lung ``surfactant convertase'' is a member of the carboxylesterase family.  Biochem Biophys Res Commun . 1997;  235 180-184
  • 40 Nieman G F, Bredenberg C E. High surface tension pulmonary edema induced by detergent aerosol.  J Appl Physiol . 1985;  58 129-136
  • 41 Wright J R. Immunomodulatory functions of surfactant.  Physiol Rev . 1997;  77 931-962
  • 42 Jobe A H. Pulmonary surfactant therapy.  N Engl J Med . 1993;  328 861-868
  • 43 Seeger W, Günther A, Walmrath H D, Grimminger F, Lasch H G. Alveolar surfactant and adult respiratory distress syndrome: pathogenetic role and therapeutic prospects.  Clin Investig . 1993;  71 177-190
  • 44 Günther A, Siebert C, Schmidt R. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema.  Am J Respir Crit Care Med . 1996;  153 176-184
  • 45 Hallman M, Spragg R, Harrell J H, Moser K M, Gluck L. Evidence of lung surfactant abnormality in respiratory failure: study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol.  J Clin Invest . 1982;  70 673-683
  • 46 Gregory T J, Longmore W J, Moxley M A. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome.  J Clin Invest . 1991;  88 1976-1981
  • 47 Seeger W, Elssner A, Günther A, Kramer H J, Kalinowski H O. Lung surfactant phospholipids associate with polymerizing fibrin: loss of surface activity.  Am J Respir Cell Mol Biol . 1993;  9 213-220
  • 48 Seeger W, Grube C, Günther A, Schmidt R. Surfactant inhibition by plasma proteins: differential sensitivity of various surfactant preparations.  Eur Respir J . 1993;  6 971-977
  • 49 Seeger W, Günther A, Thede C. Differential sensitivity to fibrinogen inhibition of SP-C- versus SP-B-based surfactants.  Am J Physiol . 1992;  262 L286-L291
  • 50 Günther A, Mosavi P, Heinemann S. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia: comparison with the acute respiratory distress syndrome.  Am J Respir Crit Care Med . 2000;  161 454-462
  • 51 Idell S, Koenig K B, Fair D S, Martin T R, McLarty J, Maunder R J. Serial abnormalities of fibrin turnover in evolving adult respiratory distress syndrome.  Am J Physiol . 1991;  261 L240-L248
  • 52 Pison U, Tam E K, Caughey G H, Hawgood S. Proteolytic inactivation of dog lung surfactant-associated proteins by neutrophil elastase.  Biochim Biophys Acta . 1989;  992 251-257
  • 53 Baker C S, Evans T W, Randle B J, Haslam P L. Damage to surfactant-specific protein in acute respiratory distress syndrome.  Lancet . 1999;  353 1232-1237
  • 54 Gregory T J, Steinberg K P, Spragg R. Bovine surfactant therapy for patients with acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1997;  155 1309-1315
  • 55 Walmrath D, Günther A, Ghofrani H A. Bronchoscopic surfactant administration in patients with severe adult respiratory distress syndrome and sepsis.  Am J Respir Crit Care Med . 1996;  154 57-62
  • 56 Walmrath D, Schneider T, Schermuly R, Olschewski H, Grimminger F, Seeger W. Direct comparison of inhaled nitric oxide and aerosolized prostacyclin in acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1996;  153 991-996
  • 57 Roca J, Wagner P D. Contribution of multiple inert gas elimination technique to pulmonary medicine. 1. Principles and information content of the multiple inert gas elimination technique.Thorax .  1994;  49 815-824
  • 58 Meduri G U, Reddy R C, Stanley T, El-Zeky F. Pneumonia in acute respiratory distress syndrome: a prospective evaluation of bilateral bronchoscopic sampling.  Am J Respir Crit Care Med . 1998;  158 870-875
  • 59 Delclaux C, Roupie E, Blot F, Brochard L, Lemaire F, Brun-Buisson C. Lower respiratory tract colonization and infection during severe acute respiratory distress syndrome: incidence and diagnosis.  Am J Respir Crit Care Med . 1997;  156 1092-1098
  • 60 Markowicz P, Wolff M, Djedaini K. Multicenter prospective study of ventilator-associated pneumonia during acute respiratory distress syndrome: incidence, prognosis, and risk factors. ARDS Study Group.  Am J Respir Crit Care Med . 2000;  161 1942-1948
  • 61 Chastre J, Trouillet J L, Vuagnat A. Nosocomial pneumonia in patients with acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1998;  157 1165-1172
  • 62 Maus U, Herold S, Muth H. Monocytes recruited into the alveolar air space of mice show a monocytic phenotype but upregulate CD14.  Am J Physiol Lung Cell Mol Physiol . 2001;  280 L58-L68
  • 63 Crouch E, Hartshorn K, Ofek I. Collectins and pulmonary innate immunity.  Immunol Rev . 2000;  173 52-65
  • 64 Greene K E, Wright J R, Steinberg K P. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS.  Am J Respir Crit Care Med . 1999;  160 1843-1850
  • 65 LeVine A M, Whitsett J A, Gwozdz J A. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung.  J Immunol . 2000;  165 3934-3940
  • 66 Seidenfeld J J, Pohl D F, Bell R C, Harris G D, Johanson Jr G W. Incidence, site, and outcome of infections in patients with the adult respiratory distress syndrome.  Am Rev Respir Dis . 1986;  134 12-16
  • 67 International consensus conferences in intensive care medicine: ventilator-associated lung injury in ARDS. This official conference report was cosponsored by the American Thoracic Society, The European Society of Intensive Care Medicine, and The Societe de Reanimation de Langue Francaise, and was approved by the ATS Board of Directors, July 1999.  Am J Respir Crit Care Med . 1999;  160 2118-2124
  • 68 Tremblay L, Valenza F, Ribeiro S P, Li J, Slutsky A S. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model.  J Clin Invest . 1997;  99 944-952
  • 69 Slutsky A S, Tremblay L N. Multiple system organ failure: is mechanical ventilation a contributing factor?.  Am J Respir Crit Care Med . 1998;  157 1721-1725
  • 70 Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats.  Am Rev Respir Dis . 1985;  132 880-884
  • 71 Parker J C, Townsley M I, Rippe B, Taylor A E, Thigpen J. Increased microvascular permeability in dog lungs due to high peak airway pressures.  J Appl Physiol . 1984;  57 1809-1816
  • 72 Tsuno K, Prato P, Kolobow T. Acute lung injury from mechanical ventilation at moderately high airway pressures.  J Appl Physiol . 1990;  69 956-961
  • 73 Ito Y, Veldhuizen R A, Yao L J, McCaig L A, Bartlett A J, Lewis J F. Ventilation strategies affect surfactant aggregate conversion in acute lung injury.  Am J Respir Crit Care Med . 1997;  155 493-499
  • 74 McHugh L G, Milberg J A, Whitcomb M E, Schoene R B, Maunder R J, Hudson L D. Recovery of function in survivors of the acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1994;  150 90-94
  • 75 Meduri G U, Tolley E A, Chinn A, Stentz F, Postlethwaite A. Procollagen types I and III aminoterminal propeptide levels during acute respiratory distress syndrome and in response to methylprednisolone treatment.  Am J Respir Crit Care Med . 1998;  158 1432-1441
  • 76 Armstrong L, Thickett D R, Mansell J P. Changes in collagen turnover in early acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1999;  160 1910-1915
  • 77 Marshall R P, Bellingan G, Webb S. Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome.  Am J Respir Crit Care Med . 2000;  162 1783-1788
  • 78 Madtes D K, Rubenfeld G, Klima L D. Elevated transforming growth factor-alpha levels in bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1998;  158 424-430
  • 79 Thrall R S, McCormick J R, Jack R M, McReynolds R A, Ward P A. Bleomycin-induced pulmonary fibrosis in the rat. Inhibition by indomethacin.  Am J Pathol . 1979;  95 117-130
  • 80 Jones H A, Schofield J B, Krausz T, Boobis A R, Haslett C. Pulmonary fibrosis correlates with duration of tissue neutrophil activation.  Am J Respir Crit Care Med . 1998;  158 620-628
  • 81 Piguet P F, Haufman S, Barazzone C, Muller M, Ryffel B, Eugster H P. Resistance of TNF/LT alpha double deficient mice to bleomycin-induced fibrosis.  Int J Exp Pathol . 1997;  78 43-48
  • 82 Zhang K, Gharaee-Kermani M, McGarry B, Remick D, Phan S H. TNF-alpha mediated lung cytokine networking and eosinophil recruitment in pulmonary fibrosis.  J Immunol . 1997;  158 954-959
  • 83 Lasky J A, Ortiz L A, Tonthat B. Connective tissue growth factor mRNA expression is upregulated in bleomycin-induced lung fibrosis.  Am J Physiol . 1998;  275 L365-L371
  • 84 Coker R K, Laurent G J, Shahzeidi S. Transforming growth factors-beta 1, -beta 2, and -beta 3 stimulate fibroblast procollagen production in vitro but are differentially expressed during bleomycin induced lung fibrosis.  Am J Pathol . 1997;  150 981-991
  • 85 Temelkovski J, Kumar R K, Maronese S E. Enhanced production of an EGF-like growth factor by parenchymal macrophages following bleomycin-induced pulmonary injury.  Exp Lung Res . 1997;  23 377-391
  • 86 Blobe G C, Schiemann W P, Lodish H F. Role of transforming growth factor beta in human disease.  N Engl J Med . 2000;  342 1350-1358
  • 87 Günther A, Schmidt R, Nix F. Surfactant abnormalities in idiopathic pulmonary fibrosis, hypersensitivity pneumonitis and sarcoidosis.  Eur Respir J . 1999;  14 565-573
  • 88 Günther A, Markart P, Kalinowski M, Ruppert C, Grimminger F, Seeger W. Cleavage of surfactant-incorporating fibrin by different fibrinolytic agents: kinetics of lysis and rescue of surface activity.  Am J Respir Cell Mol Biol . 1999;  21 738-745
  • 89 Günther A, Mosavi P, Ruppert C. Enhanced tissue factor pathway activity and fibrin turnover in the alveolar compartment of patients with interstitial lung disease.  Thromb Haemost . 2000;  83 853-860
  • 90 Burkhardt A. Alveolitis and collapse in the pathogenesis of pulmonary fibrosis.  Am Rev Respir Dis . 1989;  140 513-524
  • 91 Ohba T, McDonald J K, Silver R M, Strange C, Carwile LeRoy E, Ludwicka A. Scleroderma bronchoalveolar lavage fluid contains thrombin, a mediator of human lung fibroblast proliferation via induction of platelet-derived growth factor α-receptor.  Am J Respir Cell Mol Biol . 1994;  10 405
  • 92 Hernandez-Rodriguez N A, Harrison N K, Chambers C. Role of thrombin in pulmonary fibrosis.  Lancet . 1995;  346 1071-1073
  • 93 Gray A J, Bishop J E, Reeves J T, Mecham R P, Laurent G J. Partially degraded fibrin(ogen) stimulates fibroblast proliferation in vitro.  Am J Respir Mol Cell Biol . 1995;  12 684-690
  • 94 Swaisgood C M, French E L, Noga C, Simon R H, Ploplis V A. The development of bleomycin-induced pulmonary fibrosis in mice deficient for components of the fibrinolytic system.  Am J Pathol . 2000;  157 177-187
  • 95 Eitzman D T, McCoy R D, Zheng X. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene.  J Clin Invest . 1996;  97 232-237