Abstract
The use of combinatorial methods to discover new catalysts is one of the youngest fields of combinatorial chemistry. The main focus of this review is the application of combinatorial liquid- and solid-phase methods for the discovery and optimisation of homogeneous catalysts. In addition, high-throughput screening techniques for fast detection of activity and selectivity in catalytic reactions are discussed. The literature from 1995 to December 2000 is covered.
1 Introduction
2 Methods in Combinatorial Catalysis
3 Combinatorial Liquid-Phase Methods
3.1 Reaction Examples
3.1.1 Carbene Insertion
3.1.2 Reductive Aldol Reaction
3.1.3 Michael Addition
3.1.4 Diethyl Zinc Addition to Aldehydes
3.1.5 Aza-Diels-Alder Reaction
3.2 Modular Ligand Systems for Homogeneous Metal Catalysis
4 Combinatorial Solid-Phase Methods
4.1 Screening for Metal Binders
4.2 Catalysts in C-C Bond Formation
4.2.1 Diethyl Zinc Addition to Aldehydes
4.2.2 Addition of Trimethylsilylcyanide to meso -Epoxides
4.2.3 Asymmetric Strecker Reaction
4.2.4 Allylic Substitution Reactions
4.3 Catalytic Oxidation and Reduction Reactions
4.3.1 Alkene Epoxidation
4.3.2 Catalytic Hydrogenation
4.4 Catalytic Phosphate Hydrolysis
5 High-Throughput Screening in Catalysis
5.1 IR-Thermography
5.2 Isotope Labelling/Pseudo Enantiomers
5.3 Fluorescence Assays
5.4 Reactive Dyes
5.5 One-pot Multi Substrate Screening
5.6 Screening of Mixtures of Catalysts
5.7 Miscellaneous Chromatographic Methods
6 Conclusion
Key words
combinatorial catalysis - catalysis - combinatorial chemistry - asymmetric catalysis - high-throughput screening
References
1
Balkenhohl F.
von dem Bussche-Hünnefeld C.
Lansky A.
Zechel C.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2289
2
Früchtel JS.
Jung G.
Angew. Chem. Int. Ed. Engl.
1996,
35:
17
3
Combinatorial Chemistry
Jung G.
Wiley-VCH;
Weinheim:
1999.
4
Furka Á.
Sebestyén F.
Asgedom M.
Dibó G. In 14th International Congress of Biochemistry (Prague)
VSP, Utrecht;
The Netherlands:
1988.
p.47
5 Combs, A. P. In Second Annual Boston College ArQule Symposium on Combinatorial Chemistry Boston, 2000.
6
Briceño G.
Change H.
Sun X.
Schultz PG.
Xiang X.-D.
Science
1995,
273
7 For a review of combinatorial methods in material science: Jandeleit B.
Schäfer DJ.
Powers TS.
Turner HW.
Weinberg WH.
Angew. Chem. Int. Ed.
1999,
38:
2494
8
Gennari C.
Nestler HP.
Piarulli U.
Salom B.
Liebigs Ann./Recueil
1997,
637
9
Brocchini S.
James K.
Tangpasuthadol JV.
Kohn J.
J. Am. Chem. Soc.
1997,
119:
4553
10
Shuttleworth SJ.
Allin SM.
Wilson RD.
Nasturica D.
Synthesis
2000,
1035
11 During the preparation of this manuscript, a review concentrating on ”Combinatorial and Evolution-Based Methods in the Creation of Enantioselective Catalysts" was published: Reetz MT.
Angew. Chem. Int. Ed.
2001,
40:
312
12
Snapper ML.
Hoveyda AH. In Combinatorial Chemistry
Fenniri H.
Oxford University Press;
Oxford:
2000.
p.433
13
Kagan HB.
J. Organomet. Chem.
1998,
567:
3
14
Crabtree RH.
Chem. Commun.
1999,
1611
15
Bein T.
Curr. Opin. Sol. State Mat. Sci.
1999,
4:
85
16
Bein T.
Angew. Chem. Int. Ed.
1999,
38:
323
17
Maier WF.
Kirsten G.
Orschel M.
Weiss PA.
Chim. Oggi
2000,
18:
15
18
Gennari F.
Seneci P.
Miertus S.
Catal. Rev. Sci. Engl.
2000,
42:
385
19
Shimizu KD.
Snapper ML.
Hoveyda AH.
Chem.-Eur. J.
1998,
4:
1885
20
Burgess K.
Lim HS.
Porte AM.
Sulikowski GA .
Angew. Chem. Int. Ed. Engl.
1996,
35:
220
21 (CuOTf)C6 H6 and sparteine in THF were used.
22 [Rh(nbd)]BPh4 and sparteine in toluene were used.
23
Taylor SJ.
Morken JP.
J. Am. Chem. Soc.
1999,
121:
12202
24 Abbrevations: i -Pr-pybox = 2,6-bis(4-isopropyl-2-oxazolin-2-yl)pyridine, t -Bu-box = 2,2"-isopropylidenebis(4-tert -butyl-2-oxazoline), Ph-semicorrin = 4-phenyl-α-[4-phenyloxazolidin-2-ylidene]-2-oxazoline-2-acetonitrile, MOP = 2-(diphenylphosphino-2"-methoxy)-1,1"-binaphthyl, BINAP = 2,2"-bis(diphenylphosphino)-1,1"-binaphthyl, DuPhos = 1,2-bis(2,5-dimethylphospholano)benzene, quinap = 1-(2-diphenylphosphino-1-naphtyl)isoquinoline, cod = cyclooctadiene.
25
Christoffers J.
Mann A.
Angew. Chem. Int. Ed.
2000,
39:
2752
26
Soai K.
Niwa S.
Chem. Rev.
1992,
92:
833
27
Kitamura M.
Hirosama SS.
Noyori R.
J. Am. Chem. Soc.
1998,
120:
9800
28
Ding K.
Ishii A.
Mikami K.
Angew. Chem. Int. Ed.
1999,
38:
497
29
Hattori K.
Yamamoto H.
Synlett
1993,
129
30
Hattori K.
Yamamoto H.
Tetrahedron
1993,
49:
1749
31
Jørgensen KA.
Angew. Chem. Int. Ed.
2000,
39:
3558
32
Bromidge S.
Wilson PC.
Whiting A.
Tetrahedron Lett.
1998,
39:
8905
33
Hayashi T. In Ferrocenes
Togni A.
Hayashi T.
VCH;
Weinheim:
1995.
p.105
34
Togni A.
Angew. Chem. Int. Ed. Engl.
1996,
35:
1475
35
Richards CJ.
Locke AJ.
Tetrahedron: Asymmetry
1998,
9:
2377
36
von Matt P.
Pfaltz A.
Angew. Chem. Int. Ed. Engl.
1993,
32:
655
37
Sprinz J.
Helmchen G.
Tetrahedron Lett.
1993,
34:
1769
38
Dawson GJ.
Frost CG.
Williams JMJ.
Coote SJ.
Tetrahedron Lett.
1993,
34:
3149
39
Takada H.
Ohe K.
Uemura S.
Angew. Chem. Int. Ed.
1999,
38:
1288
40
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
41
Noyori R.
Takaya H.
Acc. Chem. Res.
1990,
23:
345
42
Nozaki K.
Sakai N.
Nanno T.
Higashijma T.
Mano S.
Horiushi T.
Takaya H.
J. Am. Chem. Soc.
1997,
119:
4413
43
Uozumi Y.
Tanahashi A.
Lee S.-Y.
Hayashi T.
J. Org. Chem.
1993,
58:
1945
44
Lipshutz BH.
Shin Y.-J.
Tetrahedron Lett.
1998,
39:
7017
45
Selvakumar K.
Valentini M.
Wörle M.
Pregosin PS.
Albinati A.
Organometallics
1999,
18:
1207
46
Jacobsen EN.
Zhang W.
Muci AR.
Ecker JR.
Deng L.
J. Am. Chem. Soc.
1991,
113:
7063
47
Zhang W.
Loebach JL.
Wilson SR.
Jacobsen EN.
J. Am. Chem. Soc.
1990,
112:
2801
48
Palucki M.
McCormick GJ.
Jacobsen EN.
Tetrahedron Lett.
1995,
36:
5457
49
Brandes BD.
Jacobsen EN.
Tetrahedron Lett.
1995,
36:
5123
50
Li Z.
Conser KR.
Jacobsen EN.
J. Am. Chem. Soc.
1993,
115:
5326
51
O"Connor KJ.
Wey S.-J.
Burrows CJ.
Tetrahedron Lett.
1992,
33:
1001
52
Fukuda T.
Katsuki T.
Synlett
1995,
825
53
Lam F.
Xu JX.
Chan KS.
J. Org. Chem.
1996,
61:
8414
54
Pfenninger A.
Synthesis
1986,
89
55
Sharpless KB.
Behrens CH.
Katsuki T.
Lee AWM.
Martin VS.
Taktani M.
Viti SM.
Walker FJ.
Woodard SS.
Pure Appl. Chem.
1983,
55:
589
56
Pfaltz A.
Acta Chem. Scand.
1996,
50:
189
57
Porte AM.
Reibenspies J.
Burgess K.
J. Am. Chem. Soc.
1998,
120:
9180
58
Kranich R.
Eis K.
Geis O.
Mühle S.
Bats JW.
Schmalz H.-G.
Chem.-Eur. J.
2000,
6:
2874
59
Francis MB.
Finney NS.
Jacobsen EN.
J. Am. Chem. Soc.
1996,
118:
8983
60
Lin G.
Ellman JA.
J. Org. Chem.
1995,
60:
7712
61
Gennari C.
Ceccarelli S.
Piarulli U.
Montalbetti CAGN.
Jackson RFW.
J. Org. Chem.
1998,
63:
5312
62
Brouwer AJ.
van der Linden HJ.
Liskamp RMJ.
J. Org. Chem.
2000,
65:
1750
63
Gao X.
Kagan HB.
Chirality
1998,
10:
120
64
Cole BM.
Shimizu KD.
Krueger CA.
Harrity JPA.
Snapper ML.
Hoveyda AH.
Angew. Chem. Int. Ed. Engl.
1996,
35:
1668
65
Shimizu KD.
Cole BM.
Krueger CA.
Kuntz KW.
Snapper ML.
Hoveyda AH.
Angew. Chem. Int. Ed. Engl.
1997,
36:
1704
66
Sigman MS.
Jacobsen EN.
J. Am. Chem. Soc.
1998,
120:
4901
67
Sigman MS.
Vachal P.
Jacobsen EN.
Angew. Chem. Int. Ed.
2000,
39:
1279
68
Gilbertson SR.
Collibee SE.
Agrakov A.
J. Am. Chem. Soc.
2000,
122:
6522
69
Francis MB.
Jacobsen EN.
Angew. Chem. Int. Ed.
1999,
38:
937
70
Gilbertson SR.
Wang X.
Tetrahedron
1999,
55:
11609
71 The relationship between the two phosphine-containing amino acids is determined by their relative position in the peptide sequence. If the first is placed in the position i of the peptide sequence, the second is e.g. in the i +4 position. In this case three other amino acids are positioned between them.
72
Menger FM.
Eliseev AV.
Migulin VA.
J. Org. Chem.
1995,
60:
6666
73
Scanlan TS.
Prudent JR.
Schultz PG.
J. Am. Chem. Soc.
1991,
113:
9397
74
Menger FM.
Ding J.
Barragan V.
J. Org. Chem.
1998,
63:
7578
75
Berkessel A.
Hérault DA.
Angew. Chem. Int. Ed.
1999,
38:
102
76
Berkessel A.
Riedel R.
J. Comb. Chem.
2000,
2:
215
77
Taylor SJ.
Morken JP.
Science
1998,
280:
267
78
Reetz MT.
Becker MH.
Kühling KM.
Holzwarth A.
Angew. Chem. Int. Ed.
1998,
37:
2647
79
Reetz MT.
Becker MH.
Liebl M.
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
1236
80
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
81
Fürstner A.
Top. Catal.
1998,
4:
285
82
Fürstner A.
Top. Organomet. Chem.
1998,
1:
37
83
Schuster M.
Blechert S.
Angew. Chem. Int. Ed. Engl.
1997,
36:
2036
84
Reetz MT.
Becker MH.
Klein H.-W.
Stöckigt D.
Angew. Chem. Int. Ed.
1999,
38:
1758
85
Horeau A.
Nouaille A.
Tetrahedron Lett.
1990,
31:
2707
86
Guo J.
Wu J.
Siuzdak G.
Finn MG.
Angew. Chem. Int. Ed.
1999,
38:
1755
87
Shaughnessy KH.
Kim P.
Hartwig JF.
J. Am. Chem. Soc.
1999,
121:
2123
88
Copeland KH.
Miller SJ.
J. Am. Chem. Soc.
1999,
121:
4306
89
Cooper AC.
McAlexander LH.
Lee D.-H.
Torres MT.
Crabtree RH.
J. Am. Chem. Soc.
1998,
120:
9971
90
Herrmann WA.
Brossmer C.
Reisinger C.-P.
Riermeier TH.
Öfele K.
Beller M.
Chem.-Eur. J.
1997,
3:
1357
91
Corey EJ.
Bakshi RK.
Shibati S.
J. Am. Chem. Soc.
1987,
109:
5551
92
Mikami K.
Angelaud R.
Ding K.
Ishii A.
Tanaka A.
Sawada N.
Kudo K.
Senda M.
Chem.-Eur. J.
2001,
7:
730
93
Reetz MT.
Kühling KM.
Deege A.
Hinrichs H.
Belder D.
Angew. Chem. Int. Ed.
2000,
39:
3891
94 MegaBASE is commercially available from Amersham Pharmacia Biotech (Freiburg, Germany).