Bike shock absorption systems reduce the energy variation induced by terrain irregularities, leading to a greater comfort. However, they may also induce an increase in energy expenditure for the rider. More specifically, cross-country racers claim that rear shock absorption systems generate significant energy loss. The energy losses caused by such systems may be divided in terrain-induced or rider-induced. This study aims at evaluating the rider-induced energy loss of modern suspended bicycles riding on a flat surface. Twelve experienced competitive racers underwent three multistage gradational tests (50 to 250 W) on a cross-country bicycle mounted on an electromagnetically braked cycle ergometer. Three different tests were performed on a fully suspended bike, front suspended and non-suspended bicycle, respectively. The suspension mode has no significant effect on V˙O2. The relative difference of V˙O2 between the front-suspended or full-suspended bike and the rigid bike reaches a non significant maximum of only 3 %. The claims of many competitors who still prefer front shock absorption systems could be related to a possible significant energy loss that could be present at powers superior to 250 W or when they stand on the pedals. It could also be generated by terrain-induced energy loss.
Bicycle-shock-absorption-systems, mountain-bike-cross-country, energy-consumption.