Int J Sports Med 2001; 22(6): 442-446
DOI: 10.1055/s-2001-16249
Training and Testing

© Georg Thieme Verlag Stuttgart · New York

Effect of a 13-Week Aerobic Training Programme on the Maximal Power Developed During a Force-Velocity Test in Prepubertal Boys and Girls

P. Obert, M. Mandigout, A. Vinet, D. Courteix
  • Laboratory of Muscular Exercise Physiology, Faculty of Sports Sciences, University of Orleans, France.
Further Information

Publication History

Publication Date:
31 December 2001 (online)

The present study was undertaken in order to evaluate the effect of an aerobic training programme on the maximal power (Pmax) developed during a short-term exercise test in prepubertal children. Thirty-three 10 - 11 year old boys and girls were investigated: 17 (TG) participated twice a week (1 h per session) in a 13-week running programme and 16 (CG) served as a control group. Pmax was measured during a force-velocity test conducted on a friction-loaded cycle ergometer. The force (Fopt) and velocity (Vopt) at which Pmax was obtained were determined. Lower limb muscle mass (LMM) was evaluated by means of dual X-ray absorptiometry. Following training, Pmax increased even when muscle mass change due to the growth process was taken into account (Pmax W: + 23 %, W · kg-1 LMM: + 18 %, p < 0.001). The increase in Fopt was principally responsible for such an improvement since no alteration was noticed for Vopt after training. As for Pmax, Fopt was still greater following training when LMM was taken into account (p < 0.01). Furthermore, no changes were noticed for CG for all variables evaluated during the anaerobic test after the study period. Differences between TG and CG regarding Pmax and Fopt were obtained after training only. In conclusion this study highlights the effectiveness of an aerobic training programme to improve the maximal power during short-term exercise in prepubertal children.

References.

  • 1 Arsac L, Belli A, Lacour J R. Muscle function during a brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer.  Eur J Appl Physiol. 1996;  74 100-106
  • 2 Blimkie C JR. Age- and sex-associated variation in strength during childhood: anthropometric, morphologic, neurologic, biomechanical, endocrinologic, genetic and physical activity correlates. In: Gisolfi CV, Lamb DR [Eds] Perspectives in Exercise Science and Sports Medicine. Indianapolis; Youth, Exercise and Sport. Benchmark Press Inc 1989 2: 99-163
  • 3 Bar-Or O. The Wingate anaerobic test : An update on methodology, reliability and validity.  Sports Med. 1987;  4 381-394
  • 4 Bouchard C, Taylor A W, Simoneau J A, Dulac S. Testing anaerobic power and capacity. In MacDougall DJ, Wenger HA, Green HJ [Eds] Physiological testing of the high-performance athlete. Champaign IL: Human Kinetics 1991: 175-221
  • 5 Courteix D, Lespessailles E, Loiseau S, Obert P, Ferry B, Benhamou C L. Lean tissue mass is a better predictor of bone mineral content and density than body weight in prepubertal girls.  Rev Rhum [Engl Eds]. 1998;  65 328-336
  • 6 Davies C TM, Barnes C, Godfrey S. Body composition and maximal exercise performance in children.  Hum Biol . 1972;  44 195-214.
  • 7 Docherty D, Wenger H A, Collis M L. The effect of resistance training on the aerobic and anaerobic power of young boys.  Med Sci Sports Exerc. 1987;  19 389-392
  • 8 Eriksson B O, Gollnick P D, Saltin B. Muscle metabolism and enzyme activities after training in boys of 11 - 13 years old.  Acta Physiol Scand. 1973;  87 485-497
  • 9 Eriksson B O, Gollnick P D, Saltin B. The effect of physical training on muscle enzyme activities and fiber composition in 11-year-old boys.  Acta Paediatrica Belgica. 1974;  28 245-252
  • 10 Fouquet R, Belli A, Jay J, Dumas J C, Denis C, Louis P, Bonnefoy R, Rougny R. Systeme de mesure et d’exploitation de la puissance developpée sur ergometre.  Innov Tech Biol Med. 1993;  14 709-717
  • 11 Gaiga M C, Docherty D. The effect of an aerobic interval training program on intermittent anaerobic performance.  Can J Appl Physiol. 1995;  20 452-464
  • 12 Grodjinovsky A, Inbar O, Bar-Or O. Training effect on the anaerobic performance of children as measured by the Wingate anaerobic test. In: Berg K, Eriksson BO [Eds] Children and Exercise IX. Baltimore; University Park Press 1980: 139-145
  • 13 Keren G, Epstein Y. The effect of pure aerobic training on aerobic and anaerobic capacity.  Br J Sports Med. 1981;  15 27-29
  • 14 Kohrt W M. Preliminary evidence that DEXA provides an accurate assessment of body composition.  J Appl Physiol . 1998;  84 372-377
  • 15 Lakomy H KA. Measurements of work and power output using friction-loaded cycle ergometers.  Ergonomics. 1986;  29 509-517
  • 16 Levesque M, Boulay M R, Bouchard C, Simoneau J A. Time course of training-induced changes in maximal exercise of short duration in men and women.  Int J Sports Med. 1997;  18 464-469
  • 17 Linossier M T, Denis C, Dormois D, Geyssant A, Lacour J R. Ergometric and metabolic adaptation to a 5-s sprint training programme.  Eur J Appl Physiol. 1993;  67 408-414
  • 18 Mandigout S, Lecoq A M, Courteix D, Guenon P, Obert P. Effect of gender in response to an aerobic training programme in prepubertal children.  Acta Paediatr. 2001;  89 1-7
  • 19 McManus A, Armstrong N, Williams C. Effect of training on the aerobic power and anaerobic performance of prepubertal girls.  Acta Paediatr. 1997;  86 456-459
  • 20 Mercier J, Mercier B, Granier P, Le Gallais D, Préfaut C. Relationship between maximal anaerobic power and anthropometric characteristics during growth. In: Coudert J, Van Praagh E [Eds] Children and Exercise XVI. Paris; Masson 1992: 46
  • 21 Ozmun J C, Mikesky A E, Surburg P R. Neuromuscular adaptations following prepubescent strength training.  Med Sci Sports Exerc. 1994;  26 510-514
  • 22 Ramsay J A, Blimkie C JR, Smith K, Gardner S, MacDougall J D, Sale D G. Strength training effects in prepubescent boys.  Med Sci Sports Exerc. 1990;  22 605-614
  • 23 Rotstein A, Dotan R, Bar-Or O, Tenenbaum G. Effect of training on anaerobic threshold, maximal aerobic power and anaerobic performance of preadolescent boys.  Int J Sports Med. 1986;  7 281-286
  • 24 Sargeant A J, Dolan P, Thorne A. Effects of supplemental physical activity on body composition, aerobic and anaerobic power in 13-year-old boys. In: Binkhorst RA, Kemper HCG, Saris WHM [Eds] Children and Exercise XI International series on sports sciences. Champaign [IL]:. Human Kinetics Publishers 1985: 135-139
  • 25 Simoneau J A, Lortie G, Boulay M, Marcotte M, Thibault M C, Bouchard C. Inheritance of human skeletal muscle and anaerobic capacity adaptation to high-intensity intermittent training.  Int J Sports Med. 1986;  7 167-171
  • 26 Simoneau J A, Lortie G, Boulay M, Marcotte M, Thibault M C, Bouchard C. Effect of two high-intensity intermittent training programs interspaced by detraining on human skeletal muscle and performance.  Eur J Appl Physiol. 1987;  56 516-521
  • 27 Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K. Effect of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max.  Med Sci Sports Exerc. 1996;  28 1327-1330
  • 28 Tanner J M. Growth and adolescence. Oxford Blackwell Scientific Publication, 2nd Edition 1962: 325
  • 29 Thorland W G, Johnson G O, Cisar C J, Housh T J, Tharp G D. Strength and anaerobic responses of elite young female sprint and distance runners.  Med Sci Sports Exerc. 1987;  19 56-61
  • 30 Williams C A. Children’s and adolescent’s anaerobic performance during cycle ergometry.  Sports Med. 1997;  24 227-240
  • 31 Williams J H, Barnes W S, Signorile J F. A constant-load ergometer for measuring peak power output and fatigue.  J Appl Physiol . 1988;  65 2343-2348

Prof. P. Obert

Laboratoire de Physiologie des Adaptations Cardiovasculaires à l’Exercice L’Exercice Musculaire
Département STAPS, Faculté des Sciences

33 Louis Pasteur, Université d’Avignon
84 000 Avignon
France


Phone: +33 (4) 3274-3201

Fax: +33 (4) 9014-4409

Email: Philippe.Obert@univ-avignon.fr