RSS-Feed abonnieren
DOI: 10.1055/s-2001-16941
C-Terminal Fragments of ACTH Stimulate Feeding in Fasted Rats
Publikationsverlauf
Publikationsdatum:
04. September 2001 (online)

Peptides derived from pro-opiomelanocortin, including α-MSH and ACTH, play important roles in the regulation of feeding. We investigated the central effect of ACTH 1-39 (ACTH) and peptides derived from the N-terminus (ACTH 1-10, Acetyl-ACTH 1-13-amide [α-MSH]) and C-terminus (ACTH 18-39 and ACTH 22-39) of this peptide on feeding in 16 hour-fasted or rats fed ad libitum. As expected, ACTH reduced feeding in fed and previously fasted rats, although this anorectic effect was more pronounced in fasted rats. The N-terminal-derived peptide α-MSH, but not ACTH 1-10, reduced cumulative food intake over 2 h after its injection intracerebroventricularly (icv) in 16 h-fasted, but not in fed rats. In contrast, the C-terminal fragments produced a long-lasting increase in feeding in fasted, but not in fed rats. The anorectic effects of N-terminal fragments of ACTH are recognised to be mediated via melanocortin MC4 receptors. However, the orexigenic effects of the C-terminal fragments do not appear to be conducted via MC4 receptors, since neither ACTH 18-39 nor ACTH 22-39 stimulated cAMP accumulation nor inhibited the ACTH-stimulated cAMP accumulation in HEK-293 cells transfected with the recombinant MC4 receptor.
Key words:
Feeding - ACTH Fragments - MC4-R - cAMP
References
- 1 Krieger D T, Liotta A, Brownstein M J. Presence of corticotropin in brain of normal and hypohysectomized rats. Proc Natl Acad Sci USA. 1977; 74 648-652
- 2 Civelli O, Birnberg N, Herbert E. Detection and quantitation of pro-opiomelanocortin mRNA in pituitary and brain tissues from different species. J Biol Chem. 1982; 257 6783-6787
- 3 Pilcher W H, Joseph S A. Co-localisation of CRF-ir perikarya and ACTH -ir fibers in rat brain. Brain Res. 1984; 299 91-102
- 4 Wintzen M, Gilchrest B A. Proopiomelanocortin, its derived peptides, and the skin. J Invest Dermatol. 1996; 106 3-10
- 5 Ottaviani E, Franchini A, Franceschi C. Pro-opiomelanocortin-derived peptides, cytokines, and nitric oxide in immune responses and stress: an evolutionary approach. Int Rev Cytol. 1997; 170 79-141
- 6 Denef C, Van Bael A. A new family of growth and differentiation factors derived from the N-terminal domain of proopiomelanocortin (N-POMC). Comp Biochem Physiol. 1998; 119 317-324
- 7 Castro M G, Morrison E. Post-translational processing of proopiomelanocortin in the pituitary and in the brain. Crit Rev Neurobiol. 1977; 11 35-57
- 8 Yaswen L, Diehl N, Brennan M B, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to melanocortin. Nature Med. 1999; 5 1066-1070
- 9 Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genet. 1998; 19 155-157
- 10 Poggioli R, Vergoni A V, Bertolini A. ACTH-(1-24) and alpha-MSH antagonize feeding behaviour stimulated by kappa opiate agonists. Peptides. 1986; 7 843-848
- 11 Vergoni A V, Poggioli R, Marrama D, Bertolini A. Inhibition of feeding by ACTH-(1-24): behavioural and pharmacological aspects. Eur J Pharmacol. 1990; 179 347-355
- 12 Bailey C J, Flatt P R. Insulin releasing effects of adrenocorticotropin (ACTH 1-39) and ACTH fragments (1-24 and 18-39) in lean and genetically obese hyperglycaemic (ob/ob) mice. Int J Obes. 1987; 11 175-181
- 13 Bertolini A, Guarini S, Rompianesi E, Ferrari W. Alpha-MSH and other ACTH fragments improve cardiovascular function and survival in experimental hemorrhagic shock. Eur J Pharmacol. 1986; 130 19-26
- 14 Cort J H, Cort J, Novakova J, Skopkova J. Interaction of vasopressins and linear N-terminal ACTH fragments in the induction of natriuresis. Eur J Clin Invest. 1974; 4 293-298
- 15 van Riezen H, Rigter H, De Wied D. Possible significance of ACTH fragments for human mental performance. Behav Biol. 1977; 20 311-324
- 16 Martin J T, van Wimersma Greidanus T B. Imprinting behaviour: influence of vasopressin and ACTH analogues. Psychneuroendocrinology. 1979; 3 261-269
- 17 Pranzatelli M R. Review on the molecular mechanism of adrenocorticotrophic hormone in the CNS: neurotransmitters and receptors. Exp Neurol. 1994; 125 142-161
- 18 Paxinos G, Watson C. The rat brain in stereotaxic co-ordinates. New York:; Academic Press, 1986 2nd Ed.
- 19 Sawyer T K, Sanfilippo P J, Hruby V J, Engel M H, Heward C B, Burnett J B, Hadley M E. 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultralong biological activity. Proc Natl Acad Sci USA. 1980; 77 5754-5758
- 20 Quillan J M, Sadee W, Wei E T, Jimenez C, Ji L, Chang J K. A synthetic human Agouti-related protein-(83-132)-NH2 fragment is a potent inhibitor of melanocortin receptor function. FEBS Lett. 1998; 428 59-62
- 21 Smith E M, Brosnan P, Meyer W J, Blalock J E. An ACTH receptor on human mononuclear leukocytes. Relation to adrenal ACTH-receptor activity. N Engl J Med. 1987; 317 1266-1269
- 22 Lefkowitz R J, Roth J, Pricer W, Pastan I. ACTH receptors in the adrenal: specific binding of ACTH-125I and its relation to adenyl cyclase. Proc Natl Acad Sci USA. 1970; 64 745-752
- 23 Oelofsen W, Ramachandran J. Studies of corticotropin receptors on rat adipocytes. Arch Biochem Biophys. 1983; 225 414-421
- 24 Gantz I, Miwa H, Konda Y, Shimoto Y, Tashiro T, Watson S J, DelValle J, Yamada T. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J Biol Chem. 1993; 268 15 174-15 179
- 25 Tatro J B. Melanotropin receptors in the brain are differentially distributed and recognize both corticotropin and α-melanocyte stimulating hormone. Brain Res. 1990; 536 124-132
- 26 Tatro J B. Receptor biology of the melanocortins, a family of neuroimmunomodulatory peptides. Neuroimmunomodulation. 1996; 3 259-284
- 27 Huszar D, Lynch C A, Fairchild-Huntress V, Dunmore J H, Fang Q, Berkemeier L R, Gu W, Kesterson R A, Boston B A, Cone R D, Smith F J, Campfield L A, Burn P, Lee F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997; 88 131-141
- 28 Gantz I, Konda Y, Tashiro T, Shimoto Y, Miwa H, Munzert G, Watson S J, DelValle J, Yamada T. Molecular cloning of a novel melanocortin receptor. J Biol Chem. 1993; 268 8246-8250
- 29 Rossi M, Kim M S, Morgan D GA, Small C J, Edwards C MB, Sunter D, Abusnana S, Goldstone A P, Russell S H, Stanley S A, Smith D M, Yagaloff K, Ghatei M A, Bloom S R. A C-terminal fragment of agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology. 1998; 139 4428-4431
- 30 Stanley B G, Leibowitz S F. Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci. 1984; 35 2635-2642
- 31 Kyrkouli S E, Stanley B G, Leibowitz S F. Galanin: stimulation of feeding induced by medial hypothalamic injection of this novel peptide. Eur J Pharmacol. 1986; 122 159-160
- 32 Rossi M, Choi S J, O’Shea D, Miyoshi T, Ghatei M A, Bloom S R. Melanin concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology. 1997; 138 351-355
- 33 Haynes A C, Jackson B, Overend P, Buckingham R E, Wilson S, Tadayyon M, Arch J RS. Effects of single and chronic icv administration of the orexins on feeding in the rat. Peptides. 1999; 20 1099-1105
- 34 Ninan I, Kulkarni S K. Dopamine receptor sensitive effect of dizocilpine on feeding behaviour. Brain Res. 1998; 812 157-163
Dr. K. A. Al-Barazanji
Department of Metabolic Diseases
GSK Pharmaceuticals
RTP, NC27709
USA
Telefon: + 1 (919) 483 4447
Fax: + 1 (919) 483 3777
eMail: Kaa9753@gsk.com