Zusammenfassung.
Navigation in der interventionellen Radiologie und computerassistierten Chirurgie
ist visuell interaktives Zielen gestützt auf die simultane Anzeige der Instrumentenposition
und zugehöriger zwei- oder dreidimensionaler Bilddatensätze. Auf diese Weise vereint
sie anatomische Information und therapeutische Aktion. Medizinische Navigationssysteme
(MNS) können Echzeit-Bildführung simulieren und dadurch Strahlendosis sparen sowie
das ganze Spektrum der digitalen Bildverarbeitung während des Eingriffs anbieten.
Navigation stützt sich auf die Verfolgung (Tracking) von Instrumenten im Raum und
die Umrechnung von Bild-, Patienten- und Instrumentenkoordinaten in ein gemeinsames
Referenzsystem. Wird das Patientenkoordinatensystem als gemeinsame Basis benutzt,
spricht man von patientenbasierter Navigation (PBN). Ist die bildgebende Modalität
im Interventionsraum verfügbar und wird deren Referenzsystem zugrunde gelegt, handelt
es sich um modalitätsbasierte Navigation (MBN). MBN benötigt keine vorangehende Registrierung
und bietet inhärent die Möglichkeit der intraoperativen Bildgebung. MNS sind seit
Jahren in der Neurochirurgie etabliert. Sie werden hier vor allem für die rahmenlose
Biopsie und die Minimierung des Zugangstraumas bei tiefliegenden Prozessen eingesetzt.
Sie erleben derzeit eine rasche Verbreitung in andere chirurgische Disziplinen wie
z. B. die Otorhinolaryngologie oder die Traumatologie. Die klinische Genauigkeit eines
MNS ist schwierig zu messen, da intraoperativ meist keine unabhängige Messmethode
zur Verfügung steht. Üblicherweise wird eine Abweichung von unter einem bis etwa 5
mm zwischen Anzeige des MNS und tatsächlicher Lage anatomischer Strukturen angegeben.
Bisher liegen nur sehr wenige prospektive randomisierte klinische Studien zwischen
navigierten und nicht-navigierten Verfahren vor [1]
[2]
[3].
Navigation systems for image-guided therapy: A review.
Navigation is visually interactive targeting based on the simultaneous display of
instrument position and of the corresponding two- or three-dimensional image data
sets. In this way it unifies anatomic information and therapeutic action. Medical
navigation systems (MNS) can simulate realtime image guidance and thereby reduce radiation
exposure as well as provide the full range of digital image processing during an intervention.
Navigation is based on the tracking of medical instruments in space and the transformation
of image, patient, and instrument coordinates into a common reference system. If the
patient coordinate system is used as the common base, the process is called patient-based
navigation (PBN). If, however, the imaging modality is present in the interventional
suite and its reference system is used, modality-based navigation (MBN) results. MBN
does not need pre-interventional registration and inherently provides intra-operative
imaging. In neurosurgery MNS's have been well established since years. They are in
use for frameless biopsies and for minimizing the access morbidity in deeply situated
pathologies. Currently there is a fast expansion of navigation into other surgical
disciplines, e.g., orthopaedic surgery. The clinical accuracy of an MNS is hard to
determine since an independent method of measurement is mostly not available during
surgery. Normally, a deviation of below one up to about 5 mm between the display of
the MNS and the actual position of an anatomic structure is reported. So far there
have been only very few prospective randomized clinical trials between conventional
and navigated interventions [1]
[2]
[3].
Schlüsselwörter:
Navigation - Computerassistierte Radiologie - Computerassistierte Chirurgie - Interventionelle
Radiologie - Minimal Invasive Therapie
Key words:
Therapy, image guided - Surgery, image guided - Navigation, modality based
Literatur
- 1
Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D.
Accuracy of pedicle screw insertion with and without computer assistance: a randomised
controlled clinical study in 100 consecutive patients.
Eur Spine J.
2000;
39
235-240
- 2
Laine T, Schlenzka D, Makitalo K, Tallroth K, Nolte L P, Visarius H.
Improved accuracy of pedicle screw insertion with computer-assisted surgery. A prospective
clinical trial of 30 patients.
Spine.
1997;
22
1254-1258
- 3
Laine T, Makitalo K, Schlenzka D, Tallroth K, Poussa M, Alho A.
Accuracy of pedicle screw insertion: a prospective CT study in 30 low back patients.
Eur Spine J.
1997;
6
402-405
- 4
Watanabe E, Watanabe T, Manaka S, Muyanagi Y, Takakura K.
Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided
stereotaxic surgery.
Surg Neurol.
1987;
27
543-547
- 5
Zamorano L, Kadi M, Jiang Z, Diaz F.
Zamorano-Dujovny multipurpose neurosurgical image-guided localizing unit: experience
in 866 consecutive cases of „open stereotaxis”.
Stereotact Funct Neurosurg.
1994;
63
45-51
- 6
Zamorano L J, Nolte L, Kadi A M, Jiang Z.
Interactive intraoperative localization using an infrared-based system.
Stereotact Funct Neurosurg.
1994;
63
84-88
- 7
Horstmann G A, Reinhardt H F.
Micro-stereometry: a frameless computerized navigating system for open microsurgery.
Comput Med Imaging Graph.
1994;
18
229-233
- 8
DiGioia A M, Jaramaz B, Colgan B D.
Computer assisted orthopaedic surgery. Image guided and robotic assistive technologies.
Clin Orthop.
1998;
354
8-16
- 9
Silverman S G, Tuncali K, Adams D F, Nawfel R D, Zou K H, Judy P F.
CT fluoroscopy-guided abdominal interventions: techniques, results, and radiation
exposure.
Radiology.
1999;
212
673-681
- 10
Froelich J J, Ishaque N, Saar B, Regn J, Walthers E M, Mauermann F, Klose K J.
Control of percutaneous biopsy with CT fluoroscopy.
Fortschr Röntgenstr.
1999;
170
191-197
- 11 Lavallee S.
Registration for Computer-Integrated Surgery: Methodology, state of the art. In: Taylor RH, Lavallee S, Burdea GC, Moesges RW (Hrsg.) Computer Integrated Surgery. Cambridge,
MA, MIT Press 1996: 77-97
- 12
Hill D L, Maurer C R, Maciunas R J, Barwise J A, Fitzpatrick J M, Wang M Y.
Measurement of intraoperative brain surface deformation under a craniotomy.
Neurosurgery, Discussion.
1998;
43
514-528
- 13
Kyriacou S K, Davatzikos C, Zinreich S J, Bryan R N.
Nonlinear elastic registration of brain images with tumor pathology using a biomechanical
model.
IEEE Trans med Imaging.
1999;
18
580-592
- 14
Hata N, Dohi T, Iseki H, Takakura K.
Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic
registration.
Neurosurgery, Discussion.
1997;
41
608-614
- 15
Jodicke A, Deinsberger W, Erbe H, Kriete A, Boker D K.
Intraoperative three-dimensional ultrasonography: an approach to register brain shift
using multidimensional image processing.
Minim Invasive Neurosurg.
1998;
41
13-19
- 16
Tonetti J, Carrat L, Lavallee S, Pittet L, Merloz P, Chirossel J P.
Percutaneous iliosacral screw placement using image guided techniques.
Clin Orthop.
1998;
354
103-110
- 17
Grevers G, Menauer F, Leunig A, Caversaccio M, Kastenbauer E.
Navigation surgery in disease of the paranasal sinuses.
Laryngorhinootologie.
1999;
78
41-46
- 18
Schwarzenbach O, Berlemann U, Jost B, Visarius H, Arm E, Langlotz F, Nolte L P, Ozdoba C.
Accuracy of computer-assisted pedicle screw placement. An in vivo computed tomography
analysis.
Spine.
1997;
22
452-458
- 19
Merloz P, Tonetti J, Pittet L, Coulomb M, Lavallee S, Troccaz J, Cinquin P, Sautot P.
Computer-assisted spine surgery.
Comput Aided Surg.
1998;
3
297-305
- 20
Kamimura M, Ebara S, Itoh H, Tateiwa Y, Kinoshita T, Takaoka K.
Accurate pedicle screw insertion under the control of a computer-assisted image guiding
system: laboratory test and clinical study.
J Orthop Sci.
1999;
4
197-206
- 21
Nolte L P, Slomczykowski M A, Berlemann U, Strauss M J, Hofstetter R, Schlenzka D,
Laine T, Lund T.
A new approach to computer-aided spine surgery: fluoroscopy-based surgical navigation.
Eur Spine J.
2000;
Suppl 1
S78-88
- 22
Langlotz F, Bachler R, Berlemann U, Nolte L P, Ganz R.
Computer assistance for pelvic osteotomies.
Clin Orthop.
1998;
354
92-102
- 23
Jacob A L, Messmer P, Stock K W, Suhm N, Baumann B, Regazzoni P, Steinbrich W.
Posterior pelvic ring fractures: closed reduction and percutaneous CT-guided sacroiliac
screw fixation.
Cardiovasc Intervent Radiol.
1997;
20
285-294
- 24
Jacob A L, Suhm N, Kaim A, Regazzoni P, Steinbrich W, Messmer P.
Coronal acetabular fractures: the anterior approach in computed tomography-navigated
minimally invasive percutaneous fixation.
Cardiovasc Intervent Radiol.
2000;
23
327-331
- 25
Khaden R, Yeh C C, Sadeghi-Tehrani M, Bax M R, Johnson J A, Welch J N, Wilkinson E P,
Shahidi R.
Comparative tracking error analysis of five different optical tracking systems.
Comput Aided Surg.
2000;
5
98-107
- 26
Jacob A L, Messmer P, Kaim A, Suhm N, Regazzoni P, Baumann B.
A whole-body registration-free navigation system for image-guided surgery and interventional
radiology.
Invest Radiol.
2000;
35
279-288
- 27
Rousu J S, Kohls P E, Kall B, Kelly P J.
Computer-assisted image-guided surgery using the Regulus Navigator.
Stud Health Technol Inform.
1998;
50
103-109
- 28
Kato A, Yoshimine T, Hayakawa T, Tomita Y, Ikeda T, Mitomo M, Harada K, Mogami H.
A frameless, armless navigational system for computer-assisted neurosurgery. Technical
note.
J Neurosurg.
1991;
74
845-849
- 29
Jacob A L, Baumann B, Messmer P, Kaim A, Suhm N, Schiel H, Lambrecht J T, Seinbrich W.
Visually Interactive Navigation in Interventional Radiology.
Comput Aided Surg.
1996;
3
11-13
- 30
Routt M L, Simonian P T, Mills W J.
Iliosacral screw fixation: early complications of the percutaneous technique.
J Orthop Trauma.
1997;
11
584-589
- 31
Routt M L, Simonian P T.
Closed reduction and percutaneous skeletal fixation of sacral fractures.
Clin Orthop.
1996;
329
121-128
- 32
Routt M L, Kregor P J, Simonian P T, Mayo K A.
Early results of percutaneous iliosacral screws placed with the patient in the supine
position.
J Orthop Trauma.
1995;
9
207-214
- 33
Koutrouvelis P G, Louie A, Lang E, Heilen R, Koulizakis E N, Koutrouvelis A.
A three-dimensional stereotactic device for computed tomography-guided invasive diagnostic
and therapeutic procedures.
Invest Radiol.
1993;
28
845-847
- 34
Brown K T, Getrajdman G I, Botet J F.
Clinical trial of the Bard CT guide system.
J Vasc Interv Radiol.
1995;
6
405-410
- 35
Onik G, Cosman E R, Wells T H, Goldberg H I, Moss A A, Costello P, Kane R A, Hoddick W I,
Demas B.
CT-guided aspirations for the body: comparison of hand guidance with stereotaxis.
Radiology.
1988;
166
389-394
- 36
Frederick P R, Brown T H, Miller M H, Bahr A L, Taylor K H.
A light-guidance system to be used for CT-guided biopsy.
Radiology.
1985;
154
535-536
- 37
Hruby W, Muschik H.
A new belt type device for CT-guided biopsy and puncture.
Ann Radiol (Paris).
1987;
30
145-146
- 38
Pereles F S, Baker M, Baldwin R, Krupinski E, Unger E C.
Accuracy of CT biopsy. Laser guidance versus conventional freehand techniques.
Acad Radiol.
1998;
5
766-770
- 39
Jacobi V, Thalhammer A, Kirchner J.
Value of a laser guidance system for CT interventions: a phantom study.
Eur Radiol.
1999;
9
137-140
- 40
Kato R, Katada K, Anno H, Suzuki S, Ida Y, Koga S.
Radiation dosimetry at CT fluoroscopy: physician's hand dose and development of needle
holders.
Radiology.
1996;
201
576-578
- 41
Iseki H, Masutani Y, Iwahara M, Tanikawa T, Muragaki Y, Taira T, Dohi T, Takakura K.
Volumegraph (overlaid three-dimensional image-guided navigation). Clinical application
of augmented reality in neurosurgery.
Stereotact Funct Neurosurg.
1997;
68
18-24
Dr. Augustus Ludwig Jacob
Institut für Diagnostische Radiologie, Universitätskliniken
Petersgraben 4, 4031 Basel
Schweiz
Phone: + 41-61-265-4911
Fax: + 41-61-265-5383
Email: ajacob@uhbs.ch