Horm Metab Res 2001; 33(9): 540-547
DOI: 10.1055/s-2001-17212
Original Clinical

© Georg Thieme Verlag Stuttgart · New York

Prolonged Exercise Following Diuretic-Induced Hypohydration Effects on Fluid and Electrolyte Hormones

B. D. Roy, H. J. Green, M. Burnett
  • Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. September 2001 (online)

To investigate the hypothesis that a reduction in plasma volume (PV) induced by diuretic administration would result in an increase in the fluid and electrolyte hormonal response to exercise, ten untrained males (VO2 peak = 3.96 ± 0.14 l/min) performed 60 min of cycle ergometry at 61 % VO2 peak twice. The test was carried out once under control conditions (CON) (placebo) and once after 4 days of diuretic administration (DIU) (Novotriamazide; 100 mg triamterene and 50 mg hydrochlorothiazide). Calculated resting PV decreased by 14.6 ± 3.3 % (p < 0.05) with DIU. No difference in plasma osmolality was observed between conditions. For the hormones measured, differences (p < 0.05) between conditions at rest were noted for plasma renin activity (PRA) (0.62 ± 0.09 vs. 5.61 ± 0.94 ng/ml/h), angiotensin I (ANG 1) (0.26 ± 0.03 vs. 0.56 ± 0.08 ng/ml), aldosterone (ALD) (143 ± 14 vs. 1603 ± 302 pg/ml), arginine vasopressin (AVP) (4.13 ± 1.1 vs. 9.58 ± 1.6 pg/ml) and atrial natriuretic pepide (α-ANP) (11.5 ± 2.8 vs. 6.33 ± 1.0 pg/ml). The exercise resulted in increases (p < 0.05) in PRA, ANG I, ALD, AVP, α-ANP. DIU led to higher levels of PRA, ANG I, and ALD (p < 0.05) and lower levels of α-ANP (p < 0.05) compared to CON. Arginine vasopressin was not affected by the loss of PV. For the catecholamines - norepinephrine (NE) and epinephrine (EPI) - only NE was higher during exercise with DIU compared to CON (p < 0.05). For PRA and ALD, the higher levels observed during exercise with DIU could be explained both by higher resting levels and a greater increase during exercise itself. For ANG I and NE, the effect of DIU only manifested itself during exercise. In contrast, the lower α-ANP observed during exercise with DIU was due to the lower resting levels. These results support the hypotheses that hypohydration leads to alterations in the secretion of all of the fluid and electrolyte hormones with the exception of AVP. The specific mechanisms of these alterations remain unclear, but appear to be related directly to the decrease in PV.

References

  • 1 Harrison H. Effects of thermal stress and exercise on blood volume in humans.  Physiol Rev. 1985;  65 149-209
  • 2 Convertino V A. Blood volume: its adaptation to endurance training.  Med Sci Sports Exerc. 1991;  23 1338-1348
  • 3 Sawka M N, Coyle E F. Influence of body water and blood volume on thermoregulation and exercise in the heat. In: Holloszy JO (ed). Exercise and Sport Science Reviews.  New York:; Lippincott, Williams and Wilkins, 1999: 167-218
  • 4 Rowell L B. Human cardiovascular adjustments to exercise and thermal stress.  Physiol Rev. 1974;  54 75-159
  • 5 Rowell L B. Human cardiovascular control.  New York:; Oxford University Press, 1993
  • 6 Fallo F. Renin-angiotensin-aldosterone system and physical exercise.  J Sports Med & Phys Fit. 1993;  33 306-312
  • 7 Wade C E, Freund B J. Hormonal control of blood volume during and following exercise. In: Gisolfi CV, Lamb DR (eds). Perspectives in exercise, science and sports medicine. Fluid homeostasis during exercise.  Carmel; Cooper Publishing Group, 1990: 207-245
  • 8 Montain S J, Laird J E, Latzka W A, Sawka M N. Aldosterone and vasopressin responses in the heat: hydration level and exercise intensity effects.  Med Sci Sports Exerc. 1997;  29 661-668
  • 9 Dostal D E, Baker K M. The cardiac renin-angiotensin system. Conceptual, or a regulator of cardiac function?.  Circ Res. 1999;  85 643-650
  • 10 Reid I A. Angiotensin II and baroreflex control of heart rate.  News In Physiol Sci. 1996;  11 270-274
  • 11 Share L. Control of vasopressin release: An old but continuing story.  News In Physiol Sci. 1996;  11 7-11
  • 12 Green H J, Jones L L, Hughson R L, Painter D C, Farrance B W. Training-induced hypervolemia: lack of an effect on oxygen utilization during exercise.  Med Sci Sports Exerc. 1987;  19 202-206
  • 13 Gillen C M, Lee R, Mack G W, Tomaselli C M, Nishiyasu T, Nadel E R. Plasma volume expansion in humans after a single intense exercise protocol.  J Appl Physiol. 1991;  71 1914-1920
  • 14 Shoemaker J K, Green H J, Ball-Burnett M E, Grant S M. Relationships between fluid and electrolyte hormones and plasma volume during exercise with training and detraining.  Med Sci Sports Exerc. 1998;  30 497-505
  • 15 Convertino V A, Keil L C, Greenleaf J E. Plasma volume, renin and vasopressin responses to graded exercise after training.  J Appl Physiol. 1983;  54 508-514
  • 16 Grant S M, Green H J, Phillips S M, Sutton J R. Fluid and electrolyte responses to exercise and acute plasma volume expansion.  J Appl Physiol. 1996;  81 2386-2392
  • 17 Convertino V A, Greenleaf J E, Bernhauer E M. Role of thermal and exercise factors in the mechanism of hypervolemia.  J Appl Physiol. 1980;  48 657-664
  • 18 Zappe D H, Helyar R G, Green H. The interaction between short-term training, and a diuretic induced hypovolemic stimulus.  Eur J Appl Physiol. 1996;  72 335-340
  • 19 Senay L C, Mitchell D, Wyndham C H. Acclimatization in a hot, humid environment: body fluid adjustments.  J Appl Physiol. 1976;  40 786-796
  • 20 Hughson R L, Kowalchuk J M, Prime W M, Green H J. Open-circuit gas exchange analysis in the non-steady state.  Can J Appl Sport Sci. 1980;  5 15-18
  • 21 Roy B D, Green H J, Burnett M. Prolonged exercise following diuretic-induced hypohydration. Effects on cardiovascular and thermal strain.  Can J Physiol and Pharmacol. 2000;  78 541-547
  • 22 Weicher H, Feraudi M, Hágele H, Plato R. Electrochemical detection of catecholamines in urine and plasma after separation with HPLC.  Clin Chim Acta. 1984;  141 17-25
  • 23 Green H J, Jones S, Ball-Burnett M, Fraser I. Early adaptations in blood substrates, metabolites, and hormones to prolonged exercise training in man.  Can J Physiol and Pharmacol. 1991;  69 1222-1229
  • 24 van Beaumont W, Greenleaf J E, Juhos L. Disproportional changes in hematocrit, plasma volume, and proteins during exercise and bed rest.  J Appl Physiol. 1972;  33 55-61
  • 25 Harrison M H. Heat and exercise: effects on blood volume.  Med Sci Sports Exerc. 1986;  3 214-223
  • 26 Melin B, Jimenez C, Savourey G, Bittel J, Cottet-Emard J M, Pequignot J M, Allevard A M, Gharib C. Effects of hydration state on hormonal and renal responses during moderate exercise in the heat.  Eur J Appl Physiol. 1997;  76 320-327
  • 27 Francesconi R P, Sawka M N, Pandolf K B, Hubbard R W, Young A J, Muza S. Plasma hormonal responses at graded hypohydration levels during exercise-heat stress.  J Appl Physiol. 1985;  59 1855-1860
  • 28 Brandenberger G, Candas V, Follenius M, Lipert J P, Kahn J M. The influence of the initial state of hydration on endocrine responses to exercise in the heat.  Europ J Appl Physiol. 1989;  58 674-679
  • 29 Kanstrup I L, Marving J, Hoilund-Carlsen P F. Acute plasma volume expansion: left ventricular hemodynamics and endocrine function during exercise.  J Appl Physiol. 1992;  73 1791-1796
  • 30 Epstein M, Loutzenhiser R, Friedland E, Aceto R M, Camargo M F, Atlas S A. Increases in circulatory atrial natriuretic factor during immersion-induced central hypervolemia in normal humans.  J Hypertens. 1986;  2 S93-S99
  • 31 Myers B D, Peterson C, Molina C, Tomlanovich S J, Newton L D, Nitkin R, Sandler M, Murad F. Role of cardiac atria in the human renal response to changing plasma volume.  Am J Physiol. 1988;  254 F562-F573

Dr. H. J. Green

Department of Kinesiology
University of Waterloo

200 University Avenue West
Waterloo, ON, N2L 3G1
Canada


Telefon: + 1 (519) 888-4567 or+ 1 (519) 888-3454

Fax: + 1 (519) 885-0470

eMail: green@healthy.uwaterloo.ca