Semin Liver Dis 2001; 21(3): 337-350
DOI: 10.1055/s-2001-17551
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Hepatic Blood Flow Regulation by Stellate Cells in Normal and Injured Liver

Don C. Rockey
  • Departments of Medicine and Cell Biology, and The Liver Center, Duke University Medical Center, Durham, North Carolina
Further Information

Publication History

Publication Date:
01 October 2001 (online)

ABSTRACT

Hepatic stellate cells have received considerable attention as key components of the fibrogenic response to injury. Beyond this feature, they also have been implicated as regulators of sinusoidal vascular tone, and in disease states, in the pathogenesis of intrahepatic portal hypertension. The basis for this latter concept is derived from the following: (a) stellate cells are situated in a perisinusoidal orientation within the sinusoid, optimized for sinusoidal constriction; (b) a series of studies performed over the past decade have demonstrated that perisinusoidal stellate cells exhibit a remarkable capacity for cellular contraction, a characteristic that is most prominent after liver injury and stellate cell activation; and (c) in vivo microscopy studies have revealed that stellate cells can mediate sinusoidal constriction. Available evidence indicates that liver injury leads to a vascular disorder in which endothelin-1 is overproduced by stellate cells and endothelial cell-derived nitric oxide production is reduced. These abnormalities, in the context of exaggerated stellate cell contractility after liver injury, set up a paradigm in which stellate cells contribute to the increased intrahepatic resistance typical of portal hypertension. Furthermore, because stellate cell contractility and the mediators that control this function are dynamic processes, strategies that target exaggerated contractility provide an opportunity for novel therapeutics in intrahepatic portal hypertension.

REFERENCES

  • 1 Lautt W W, Greenway C V. Conceptual review of the hepatic vascular bed.  Hepatology . 1987;  7 952-963
  • 2 Wisse E, Braet F, Luo D. Structure and function of sinusoidal lining cells in the liver.  Toxicol Pathol . 1996;  24 100-111
  • 3 McCuskey R S. A dynamic and static study of hepatic arterioles and hepatic sphincters.  Am J Anat . 1966;  119 455-478
  • 4 Greenway C V, Lautt W W. Distensibility of hepatic venous resistance sites and consequences on portal pressure.  Am J Physiol . 1988;  254 H452-H458
  • 5 Bass N M, Manning J A, Weisiger R A. Increased sinusoidal volume and solute extraction during retrograde liver perfusion.  Am J Physiol . 1989;  256 G1041-G1048
  • 6 McCuskey R S. Morphological mechanisms for regulating blood flow through hepatic sinusoids.  Liver . 2000;  20 3-7
  • 7 Tilton R G, Kilo C, Williamson J R, Murch D W. Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures.  Microvasc Res . 1979;  18 336-352
  • 8 Sims D E. Recent advances in pericyte biology-implications for health and disease.  Can J Cardiol . 1991;  7 431-443
  • 9 Oda M, Azuma T, Watanabe N. Regulatory mechanism of hepatic microcirculation: involvement of the contraction and dilation of sinusoids and sinusoidal fenestrae.  Prog Appl Microcirc . 1990;  127 103-128
  • 10 Bioulac-Sage P, Lafon M E, Saric J, Balabaud C. Nerves and perisinusoidal cells in human liver.  J Hepatol . 1990;  10 105-112
  • 11 Ueno T, Sata M, Sakata R. Hepatic stellate cells and intralobular innervation in human liver cirrhosis.  Hum Pathol . 1997;  28 953-959
  • 12 Nakatani K, Seki S, Kawada N, Kobayashi K, Kaneda K. Expression of neural cell adhesion molecule (N-CAM) in perisinusoidal stellate cells of the human liver.  Cell Tissue Res . 1996;  283 159-165
  • 13 Lautt W W, Greenway C V, Legare D J, Weisman H. Localization of intrahepatic portal vascular resistance.  Am J Physiol . 1986;  251 G375-G381
  • 14 Borovikova L V, Ivanova S, Zhang M. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.  Nature . 2000;  405 458-462
  • 15 Wiest R, Groszmann R J. Nitric oxide and portal hypertension: its role in the regulation of intrahepatic and splanchnic vascular resistance.  Semin Liver Dis . 1999;  19 411-426
  • 16 Ekataksin W, Kaneda K. Liver microvascular architecture: an insight into the pathophysiology of portal hypertension.  Semin Liver Dis . 1999;  19 359-382
  • 17 Sherman I A, Pappas S C, Fisher M M. Hepatic microvascular changes associated with development of liver fibrosis and cirrhosis.  Am J Physiol . 1990;  258 H460-H465
  • 18 Blendis L M. Hepatocyte swelling and portal hypertension [Comment].  J Hepatol . 1992;  15 4-5
  • 19 van Leeuwen J D, Howe S C, Scheuer P J, Sherlock S. Portal hypertension in chronic hepatitis: relationship to morphological changes.  Gut . 1990;  31 339-343
  • 20 McGuire R F, Bissell D M, Boyles J, Roll F J. Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver.  Hepatology . 1992;  15 989-997
  • 21 Pinzani M, Failli P, Ruocco C. Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients.  J Clin Invest . 1992;  90 642-646
  • 22 Kawada N, Klein H, Decker K. Eicosanoid-mediated contractility of hepatic stellate cells.  Biochem J . 1992;  285 367-371
  • 23 Kawada N, Tran-Thi T A, Klein H, Decker K. The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus.  Eur J Biochem . 1993;  213 815-823
  • 24 Rockey D C, Housset C N, Friedman S L. Activation-dependent contractility of rat hepatic lipocytes in culture and in vivo.  J Clin Invest . 1993;  92 1795-1804
  • 25 Zhang J X, Pegoli W J, Clemens M G. Endothelin-1 induces direct constriction of hepatic sinusoids.  Am J Physiol . 1994;  266 G624-G632
  • 26 Zhang J X, Bauer M, Clemens M G. Vessel- and target cell-specific actions of endothelin-1 and endothelin-3 in rat liver.  Am J Physiol . 1995;  269 G269-G277
  • 27 Bauer M, Zhang J X, Bauer I, Clemens M G. Endothelin-1 as a regulator of hepatic microcirculation: sublobular distribution of effects and impact on hepatocellular secretory function.  Shock . 1994;  1 457-465
  • 28 Bauer M, Paquette N C, Zhang J X. Chronic ethanol consumption increases hepatic sinusoidal contractile response to endothelin-1 in the rat.  Hepatology . 1995;  22 1565-1576
  • 29 Pannen B H, Al-Adili F, Bauer M, Clemens M G, Geiger K K. Role of endothelins and nitric oxide in hepatic reperfusion injury in the rat.  Hepatology . 1998;  27 755-764
  • 30 Okumura S, Takei Y, Kawano S. Vasoactive effect of endothelin-1 on rat liver in vivo.  Hepatology . 1994;  19 155-161
  • 31 Suematsu M, Goda N, Sano T. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver [Comments].  J Clin Invest . 1995;  96 2431-2437
  • 32 Clemens M G, Zhang J X. Regulation of sinusoidal perfusion: in vivo methodology and control by endothelins.  Semin Liver Dis . 1999;  19 383-396
  • 33 Rockey D C, Weisiger R A. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance.  Hepatology . 1996;  24 233-240
  • 34 Kent G, Gay S, Inouye T, Bahu R, Minick O T, Popper H. Vitamin A-containing lipocytes and formation of type III collagen in liver injury.  Proc Natl Acad Sci USA . 1976;  73 3719-3722
  • 35 Friedman S L, Roll F J, Boyles J, Bissell D M. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver.  Proc Natl Acad Sci USA . 1985;  82 8681-8685
  • 36 Maher J J, McGuire R F. Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo.  J Clin Invest . 1990;  86 1641-1648
  • 37 Tanaka Y, Nouchi T, Yamane M. Phenotypic modulation in lipocytes in experimental liver fibrosis.  J Pathol . 1991;  164 273-278
  • 38 Rockey D C, Boyles J K, Gabbiani G, Friedman S L. Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture.  J Submicrosc Cytol Pathol . 1992;  24 193-203
  • 39 Gabbiani G, Ryan G B, Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction.  Experientia . 1971;  27 549-550
  • 40 Gabbiani G. Some historical and philosophical reflections on the myofibroblast concept.  Curr Top Pathol . 1999;  93 1-5
  • 41 Bhathal P S, Grossman H J. Reduction of the increased portal vascular resistance of the isolated perfused cirrhotic rat liver by vasodilators.  J Hepatol . 1985;  1 325-337
  • 42 Ballardini G, Fallani M, Biagini G, Bianchi F B, Pisi E. Desmin and actin in the identification of Ito cells and in monitoring their evolution to myofibroblasts in experimental liver fibrosis.  Virchows Arch [B] . 1988;  56 45-49
  • 43 Jezequel A M, Mancini R, Rinaldesi M L. Dimethylnitrosamine-induced cirrhosis. Evidence for an immunological mechanism.  J Hepatol . 1989;  8 42-52
  • 44 Kawada N, Seki S, Kuroki T, Kaneda K. ROCK inhibitor Y-27632 attenuates stellate cell contraction and portal pressure increase induced by endothelin-1.  Biochem Biophys Res Commun . 1999;  266 296-300
  • 45 Yoo D S, Gong D W, Rockey D C. The role of rho kinase in stellate cell activation following liver injury.  Hepatology . 2000;  32 389[Abst]
  • 46 Yoo D S, Rockey D C. Endothelin receptor subtypes in liver injury: upregulation and differential signaling in myofibroblast contractility.  Hepatology . 2000;  32 328[Abst]
  • 47 Bataller R, Nicolas J M, Ginees P. Contraction of human hepatic stellate cells activated in culture: a role for voltage-operated calcium channels.  J Hepatol . 1998;  29 398-408
  • 48 Irle C, Kocher O, Gabbiani G. Contractility of myofibroblasts during experimental liver cirrhosis.  J Submicrosc Cytol . 1980;  12 209-217
  • 49 Yanagisawa M. The endothelin system. A new target for therapeutic intervention [Editorial; comment].  Circulation . 1994;  89 1320-1322
  • 50 Yanagisawa M, Inoue A, Ishikawa T. Primary structure, synthesis, and biological activity of rat endothelin, an endothelium-derived vasoconstrictor peptide.  Proc Natl Acad Sci U S A . 1988;  85 6964-6967
  • 51 Inoue A, Yanagisawa M, Kimura S. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes.  Proc Natl Acad Sci USA . 1989;  86 2863-2867
  • 52 Hocher B, Thone-Reineke C, Bauer C, Raschack M, Neumayer H H. The paracrine endothelin system: pathophysiology and implications in clinical medicine [Comments].  Eur J Clin Chem Clin Biochem . 1997;  35 175-189
  • 53 Battistini B, Chailler P, D'Orleans-Juste P, Briere N, Sirois P. Growth regulatory properties of endothelins.  Peptides . 1993;  14 385-399
  • 54 Douglas S A, Ohlstein E H. Endothelin-1 promotes neointima formation after balloon angioplasty in the rat.  J Cardiovasc Pharmacol . 1993;  22(Suppl 8) 371-373
  • 55 Hahn A W, Regenass S, Resink T J, Kern F, Buhler F R. Morphogenic effects of endothelin-1 on vascular smooth muscle cells.  J Vasc Res . 1993;  30 192-201
  • 56 Wang Y, Rose P M, Webb M L, Dunn M J. Endothelins stimulate mitogen-activated protein kinase cascade through either ETA or ETB.  Am J Physiol . 1994;  267 C1130-C1135
  • 57 Dawes K E, Cambrey A D, Campa J S. Changes in collagen metabolism in response to endothelin-1: evidence for fibroblast heterogeneity.  Int J Biochem Cell Biol . 1996;  28 229-238
  • 58 Kohan D E. Endothelins in the normal and diseased kidney.  Am J Kidney Dis . 1997;  29 2-26
  • 59 Kurihara Y, Kurihara H, Suzuki H. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1 [Comments].  Nature . 1994;  368 703-710
  • 60 Baynash A G, Hosoda K, Giaid A. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons.  Cell . 1994;  79 1277-1285
  • 61 Hosoda K, Hammer R E, Richardson J A. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice.  Cell . 1994;  79 1267-1276
  • 62 Puffenberger E G, Hosoda K, Washington S S. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease.  Cell . 1994;  79 1257-1266
  • 63 Kourembanas S, Marsden P A, McQuillan L P, Faller D V. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium.  J Clin Invest . 1991;  88 1054-1057
  • 64 Lee M E, Temizer D H, Clifford J A, Quertermous T. Cloning of the GATA-binding protein that regulates endothelin-1 gene expression in endothelial cells.  J Biol Chem . 1991;  266 16188-16192
  • 65 Marsden P A, Brenner B M. Transcriptional regulation of the endothelin-1 gene by TNF-alpha.  Am J Physiol . 1992;  262 C854-C861
  • 66 Opgenorth T J, Wu-Wong J R, Shiosaki K. Endothelin-converting enzymes.  FASEB J . 1992;  6 2653-2659
  • 67 Ohnaka K, Takayanagi R, Nishikawa M, Haji M, Nawata H. Purification and characterization of a phosphoramidon-sensitive endothelin-converting enzyme in porcine aortic endothelium.  J Biol Chem . 1993;  268 26759-26766
  • 68 Xu D, Emoto N, Giaid A. ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1.  Cell . 1994;  78 473-485
  • 69 Emoto N, Yanagisawa M. Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum.  J Biol Chem . 1995;  270 15262-15268
  • 70 Valdenaire O, Rohrbacher E, Mattei M G. Organization of the gene encoding the human endothelin-converting enzyme (ECE-1).  J Biol Chem . 1995;  270 29794-29798
  • 71 Sakurai T, Yanagisawa M, Masaki T. Molecular characterization of endothelin receptors.  Trends Pharmacol Sci . 1992;  13 103-108
  • 72 Rubanyi G M, Botelho L H. Endothelins.  FASEB J . 1991;  5 2713-2720
  • 73 Clozel M, Gray G A, Breu V, Loffler B M, Osterwalder R. The endothelin ETB receptor mediates both vasodilation and vasoconstriction in vivo.  Biochem Biophys Res Commun . 1992;  186 867-873
  • 74 Simonson M S, Dunn M J. Cellular signaling by peptides of the endothelin gene family.  FASEB J . 1990;  4 2989-3000
  • 75 Moore K, Wendon J, Frazer M, Karani J, Williams R, Badr K. Plasma endothelin immunoreactivity in liver disease and the hepatorenal syndrome [Comments].  N Engl J Med . 1992;  327 1774-1778
  • 76 Moller S, Emmeluth C, Henriksen J H. Elevated circulating plasma endothelin-1 concentrations in cirrhosis.  J Hepatol . 1993;  19 285-290
  • 77 Asbert M, Gines A, Gines P. Circulating levels of endothelin in cirrhosis.  Gastroenterology . 1993;  104 1485-1491
  • 78 Trevisani F, Colantoni A, Gerbes A L. Daily profile of plasma endothelin-1 and -3 in pre-ascitic cirrhosis: relationships with the arterial pressure and renal function.  J Hepatol . 1997;  26 808-815
  • 79 Rockey D C, Fouassier L, Chung J J. Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells.  Hepatology . 1998;  27 472-480
  • 80 Alam I, Bass N M, Bacchetti P, Gee L, Rockey D C. Hepatic tissue endothelin-1 levels in chronic liver disease correlate with disease severity and ascites.  Am J Gastroenterol . 2000;  95 199-203
  • 81 Appleton I, Tomlinson A, Chander C L, Willoughby D A. Effect of endothelin-1 on croton oil-induced granulation tissue in the rat. A pharmacologic and immunohistochemical study [Comments].  Lab Invest . 1992;  67 703-710
  • 82 Nakamura T, Ebihara I, Fukui M, Tomino Y, Koide H. Effect of a specific endothelin receptor A antagonist on mRNA levels for extracellular matrix components and growth factors in diabetic glomeruli.  Diabetes . 1995;  44 895-899
  • 83 Tsai Y T, Lin H C, Yang M C. Plasma endothelin levels in patients with cirrhosis and their relationships to the severity of cirrhosis and renal function [Comments].  J Hepatol . 1995;  23 681-688
  • 84 Giaid A p, Yanagisawa M, Langleben D. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension.  N Engl J Med . 1993;  328 1732-1739
  • 85 Saleh D, Furukawa K, Tsao M S. Elevated expression of endothelin-1 and endothelin-converting enzyme-1 in idiopathic pulmonary fibrosis: possible involvement of proinflammatory cytokines.  Am J Respir Cell Mol Biol . 1997;  16 187-193
  • 86 Kakugawa Y, Giaid A, Yanagisawa M. Expression of endothelin-1 in pancreatic tissue of patients with chronic pancreatitis.  J Pathol . 1996;  178 78-83
  • 87 Giaid A, Saleh D, Yanagisawa M, Forbes R D. Endothelin-1 immunoreactivity and mRNA in the transplanted human heart.  Transplantation . 1995;  59 1308-1313
  • 88 Vancheeswaran R, Azam A, Black C, Dashwood M R. Localization of endothelin-1 and its binding sites in scleroderma skin.  J Rheumatol . 1994;  21 1268-1276
  • 89 Vancheeswaran R, Magoulas T, Efrat G. Circulating endothelin-1 levels in systemic sclerosis subsets-a marker of fibrosis or vascular dysfunction?.  J Rheumatol . 1994;  21 1838-1844
  • 90 Forbes R D, Cernacek P, Zheng S, Gomersall M, Guttmann R D. Increased endothelin expression in a rat cardiac allograft model of chronic vascular rejection.  Transplantation . 1996;  61 791-797
  • 91 Shao R, Yan W, Rockey D C. Regulation of endothelin-1 synthesis by endothelin-converting enzyme-1 during wound healing.  J Biol Chem . 1999;  274 3228-3234
  • 92 Housset C, Rockey D C, Bissell D M. Endothelin receptors in rat liver: lipocytes as a contractile target for endothelin 1.  Proc Natl Acad Sci U S A . 1993;  90 9266-9270
  • 93 Stephenson K, Harvey S A, Mustafa S B, Eakes A T, Olson M S. Endothelin association with the cultured rat Kupffer cell: characterization and regulation.  Hepatology . 1995;  22 896-905
  • 94 Gondo K, Ueno T, Sakamoto M, Sakisaka S, Sata M, Tanikawa K. The endothelin-1 binding site in rat liver tissue: light- and electron-microscopic autoradiographic studies.  Gastroenterology . 1993;  104 1745-1749
  • 95 Gandhi C R, Sproat L A, Subbotin V M. Increased hepatic endothelin-1 levels and endothelin receptor density in cirrhotic rats.  Life Sci . 1996;  58 55-62
  • 96 Kawada N, Inoue M. Effect of adrenomedullin on hepatic pericytes (stellate cells) of the rat.  FEBS Lett . 1994;  356 109-113
  • 97 Rockey D C, Chung J J. Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility.  J Clin Invest . 1995;  95 1199-1206
  • 98 Gorbig M N, Gines P, Bataller R. Human hepatic stellate cells secrete adrenomedullin: potential autocrine factor in the regulation of cell contractility.  J Hepatol . 2001;  34 222-229
  • 99 Moncada S, Higgs A. The L-arginine-nitric oxide pathway.  N Engl J Med . 1993;  329 2002-2012
  • 100 Bredt D S, Hwang P M, Glatt C E, Lowenstein C, Reed R R, Snyder S H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase.  Nature . 1991;  351 714-718
  • 101 Lowenstein C J, Glatt C S, Bredt D S, Snyder S H. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme.  Proc Natl Acad Sci U S A . 1992;  89 6711-6715
  • 102 Lamas S, Marsden P A, Li G K, Tempst P, Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform.  Proc Natl Acad Sci USA . 1992;  89 6348-6352
  • 103 Sessa W C, Harrison J K, Barber C M. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase.  J Biol Chem . 1992;  267 15274-15276
  • 104 Sessa W C. The nitric oxide synthase family of proteins.  J Vasc Res . 1994;  31 131-143
  • 105 Ranjan V, Xiao Z, Diamond S L. Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress.  Am J Physiol . 1995;  269 H550-H555
  • 106 Robinson L J, Weremowicz S, Morton C C, Michel T. Isolation and chromosomal localization of the human endothelial nitric oxide synthase (NOS3) gene.  Genomics . 1994;  19 350-357
  • 107 McQuillan L P, Leung G K, Marsden P A, Kostyk S K, Kourembanas S. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms.  Am J Physiol . 1994;  267 H1921-H1927
  • 108 Weiner C P, Lizasoain I, Baylis S A, Knowles R G, Charles I G, Moncada S. Induction of calcium-dependent nitric oxide synthases by sex hormones.  Proc Natl Acad Sci USA . 1994;  91 5212-5216
  • 109 Arnal J F, Yamin J, Dockery S, Harrison D G. Regulation of endothelial nitric oxide synthase mRNA, protein, and activity during cell growth.  Am J Physiol . 1994;  267 C1381-C1388
  • 110 Busconi L, Michel T. Endothelial nitric oxide synthase. N-terminal myristoylation determines subcellular localization.  J Biol Chem . 1993;  268 8410-8413
  • 111 Robinson L J, Busconi L, Michel T. Agonist-modulated palmitoylation of endothelial nitric oxide synthase.  J Biol Chem . 1995;  270 995-998
  • 112 Garcia-Cardena G, Oh P, Liu J, Schnitzer J E, Sessa W C. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling.  Proc Natl Acad Sci USA . 1996;  93 6448-6453
  • 113 Garcia-Cardena G, Martasek P, Masters B S. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo.  J Biol Chem . 1997;  272 25437-440
  • 114 Feron O, Saldana F, Michel J B, Michel T. The endothelial nitric-oxide synthase-caveolin regulatory cycle.  J Biol Chem . 1998;  273 3125-3128
  • 115 Feron O, Dessy C, Moniotte S, Desager J P, Balligand J L. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase.  J Clin Invest . 1999;  103 897-905
  • 116 Luo Z, Fujio Y, Kureishi Y. Acute modulation of endothelial Akt/PKB activity alters nitric oxide-dependent vasomotor activity in vivo.  J Clin Invest . 2000;  106 493-499
  • 117 Moncada S, Palmer R M, Higgs E A. The discovery of nitric oxide as the endogenous nitrovasodilator.  Hypertension . 1988;  12 365-372
  • 118 Huang P L, Huang Z, Mashimo H. Hypertension in mice lacking the gene for endothelial nitric oxide synthase [Comments].  Nature . 1995;  377 239-242
  • 119 Mittal M K, Gupta T K, Lee F Y, Sieber C C, Groszmann R J. Nitric oxide modulates hepatic vascular tone in normal rat liver.  Am J Physiol . 1994;  267 G416-G422
  • 120 Gupta T K, Groszmann R J. Administration of L-arginine, the physiological precursor of nitric oxide, reduces portal perfusion pressure and ameliorates hepatic hyperreactivity in experimental cirrhosis.  Hepatology . 1994;  20 200
  • 121 Nishida J, McCuskey R S, McDonnell D, Fox E S. Protective role of NO in hepatic microcirculatory dysfunction during endotoxemia.  Am J Physiol . 1994;  267 G1135-G1141
  • 122 Zimmermann H, Kurzen P, Klossner W, Renner E L, Marti U. Decreased constitutive hepatic nitric oxide synthase expression in secondary biliary fibrosis and its changes after Roux-en-Y choledocho-jejunostomy in the rat.  J Hepatol . 1996;  25 567-573
  • 123 Rockey D C, Chung J J. Regulation of inducible nitric oxide synthase in hepatic sinusoidal endothelial cells.  Am J Physiol . 1996;  271 G260-G267
  • 124 Ueno T, Tanikawa K. Intralobular innervation and lipocyte contractility in the liver.  Nutrition . 1997;  13 141-148
  • 125 Shah V, Haddad F G, Garcia-Cardena G. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids.  J Clin Invest . 1997;  100 2923-2930
  • 126 Rockey D C, Chung J J. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension.  Gastroenterology . 1998;  114 344-351
  • 127 Clemens M G. Nitric oxide in liver injury.  Hepatology . 1999;  30 1-5
  • 128 Gupta T K, Toruner M, Chung M K, Groszmann R J. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats.  Hepatology . 1998;  28 926-931
  • 129 Reichen J, Gerbes A L, Steiner M J, Sagesser H, Clozel M. The effect of endothelin and its antagonist Bosentan on hemodynamics and microvascular exchange in cirrhotic rat liver.  J Hepatol . 1998;  28 1020-1030
  • 130 Kojima H, Yamao J, Tsujimoto T, Uemura M, Takaya A, Fukui H. Mixed endothelin receptor antagonist, SB209670, decreases portal pressure in biliary cirrhotic rats in vivo by reducing portal venous system resistance.  J Hepatol . 2000;  32 43-50
  • 131 Yu Q, Shao R, Qian H S, George S E, Rockey D C. Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension.  J Clin Invest . 2000;  105 741-748
  • 132 Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs.  Int Rev Cytol . 1980;  66 303-353