Subscribe to RSS
DOI: 10.1055/s-2001-17954
Toward a Biotechnological Heparin through Combined Chemical and Enzymatic Modification of the Escherichia coli K5 Polysaccharide
Publication History
Publication Date:
22 October 2001 (online)
ABSTRACT
A process to generate glycosaminoglycans with heparin- and heparan sulfate-like sequences from the Escherichia coli K5 capsular polysaccharide is described. This polymer has the same structure as N-acetylheparosan, the precursor in heparin/ heparan sulfate biosynthesis. The process involves chemical N-deacetylation and N-sulfation, enzymatic conversion of up to 60% of the D-glucuronic acid to L-iduronic acid residues, and chemical O-sulfation. Because direct sulfation afforded unwanted 3-O-sulfated (instead of 2-O-sulfated) iduronic acid residues, a strategy involving graded solvolytic desulfation of chemically oversulfated C5-epimerized sulfaminoheparosans was assessed using persulfated heparin and heparan sulfate as model compounds. The O-desulfation process was shown to increase the anti-factor Xa activity of oversulfated heparin.
KEYWORD
K5 polysaccharide - chemical and enzymatic modification - sulfation/desulfation - biotechnological heparin - sulfation patterns
REFERENCES
- 1 Vann W F, Schmidt M A, Jann B, Jann K. The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:H4. Eur J Biochem . 1981; 116 359-364
- 2 Kusche M, Hannesson H H, Lindahl U. Biosynthesis of heparin. Use of Escherichia coli capsular polysaccharide as a model substrate in enzymic polymer modification reaction. Biochem J . 1991; 275 171-158
- 3 Casu B, Grazioli G, Hannesson H H. Biologically active heparan sulfate-like species by combined chemical and enzymic modification of the Escherichia coli polysaccharide K5. Carbohydr Lett . 1994; 1 107-114
- 4 Casu B, Grazioli G, Razi N. Heparin-like compounds prepared by chemical modification of capsular polysaccharide from E. coli K5. Carbohydr Res . 1994; 263 271-284
- 5 Razi N, Feyzi E, Björk I. Structural and functional properties of heparin analogues obtained by chemical sulfation of Escherichia coli capsular polysaccharide. Biochem J . 1995; 309 465-472
- 6 Casu B, Lindahl U. Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem . 2001; 53(in press)
- 7 Senay C, Lind T, Muguruma K. The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep . 2000; 1 282-286
- 8 Lindahl U, Kusche-Gullberg M, Kjellén L. Regulated diversity of heparan sulfate. J Biol Chem . 1998; 273 24979-24982
- 9 Kjellén L, Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem . 1991; 60 443-475
- 10 Manzoni M, Bergomi S, Cavazzoni V. Production of K5 polysaccharides of different molecular weight by Escherichia coli Bioactive Biocompatible Polymers . 1996; 11 301-311
- 11 Lormeau J C, Chevallier B, Salome M LV, Tensille d'Estais E M G. N, O-sulfated heparosans: process to produce the same and pharmaceutical compositions containing them. Patent EP 0489647, 03/12/90.
- 12 Lloyd A G, Fowler L J. Preparation of [35S] sulfamate derivatives for studies on heparin degrading enzymes of mammalian origin. Biochem Pharmacol . 1971; 20 637-664
- 13 Hagner-McWhirter A, Lindahl U, Li J P. Biosynthesis of heparin/heparan sulfate: mechanism of epimerization of glucuronosyl C-5. Biochem J . 2000; 347 69-75
- 14 Oreste P, Zoppetti G, Chini J, Tulipano G, Guerrini M. Enhancement of the activity of N-sulfoheparosan C5 epimerase towards the formation of L-iduronic acid (in press). 2000;
- 15 Nagasawa K, Inoue Y, Kamata T. Solvolytic desulfation of glycosaminoglycuronan sulfates with dimethyl sulphoxide containing water or methanol. Carbohydr Res . 1977; 58 47-55
- 16 Ogamo A, Metori A, Ukiyama N. Reactivity toward chemical sulfation of hydroxyl groups of heparin. Carbohydr Res . 1989; 193 165-172
- 17 Rej R, Jaseja M, Perlin A S. Novel regio- and stereoselective modification of heparin in alkaline solution: nuclear magnetic resonance spectroscopic evidence. Can J Chem . 1989; 67 1449-1456
- 18 Rej R N, Ludwig-Baxter K G, Perlin A S. Sulfation of some chemically modified heparins. Formation of a 3-sulfate analog of heparin. Carbohydr Res . 1991; 210 299-310
- 19 Yates E A, Santini F, Guerrini M. 1H and 13C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. Carbohydr Res . 1996; 294 15-27
- 20 Uchiyama H, Nagasawa K. Changes in the chemical structure and biological property of NO sulfate-transferred, N-resulfated heparin. J Biol Chem . 1991; 266 6756-6760
- 21 Harenberg J, De Vries X J. Characterization of heparins by high performance size exclusion liquid chromatography. J Chromatogr . 1983; 261 287-292
- 22 Naggi A, Torri G, Casu B. ``Supersulfated'' heparin fragments, a new type of low-molecular weight heparin. Biochem Pharmacol . 1986; 36 1895-1900
- 23 Casu B, Gennaro U. A simple conductimetric method for determination of carboxyl and sulfate groups of heparin and other glycosaminoglycans. Carbohydr Res . 1974; 39 168-176
- 24 Teien A N, Lie M. Evaluation of an amidolytic heparin assay method: increased sensitivity by adding purified antithrombin III. Thromb Res . 1977; 10 399-410
- 25 Lindahl U, Thunberg L, Bäckström G. Extension and structural variability of the antithrombin-binding sequence in heparin. J Biol Chem . 1984; 259 12368-12376
- 26 Casu B, Naggi A, Torri G. Glycosaminoglycans having high antithrombotic activity. EP0097013A20 01/12/2000
1 *These studies will be reported in more detail elsewhere (Naggi et al, unpublished data)