Subscribe to RSS
DOI: 10.1055/s-2001-17957
MALDI Mass Spectrometry as a Tool for Characterizing Glycosaminoglycan Oligosaccharides and their Interaction with Proteins
Publication History
Publication Date:
22 October 2001 (online)
ABSTRACT
Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry (MS) has emerged as a powerful, sensitive technique for structural analysis of glycosaminoglycans (GAGs) and their fractions and fragments. Whereas the molecular size of low sulfated or nonsulfated species (such as low-molecular weight [LMW] K5 polysaccharides) can be directly determined up to molecular weights (MWs) of 12 kD, polysulfated species require complexing with a basic polypeptide and at present can be characterized (in terms of both MW and end residues) up to the size of a decasaccharide, even in complex mixtures. MALDI spectra of GAG oligosaccharides in the presence of a complexing protein permit to assess binding to the protein and the presence of multimeric complexes.
KEYWORD
Glycosaminoglycans - MALDI mass spectrometry - molecular weight distributions - protein-binding oligosaccharides
REFERENCES
- 1 Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem . 1985; 57 2935-2939
- 2 Karas M, Bachmann D, Bahr U. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes . 1987; 78 53-68
- 3 Bahr U, Karas M, Hillenkamp F. Analysis of biopolymers by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fresenius J Anal Chem . 1994; 348 783-791
- 4 Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem . 1988; 60 2299-2301
- 5 Cohen S L, Chait B T. Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem . 1996; 68 31-37
- 6 Juhasz P, Roskey M T, Smirnov I P. Application of delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry to oligonucleotide analysis. Anal Chem . 1996; 68 941-946
- 7 Meri S, Letho T, Sutton C W. Structural composition and functional characterization of soluble CD59: heterogeneity of the oligosaccharide and glycophosphoinositol (GPI) anchor revealed by laser-desorption mass spectrometric analysis. Biochem J . 1996; 316 923-935
- 8 Wu K J, Odom R W. Characterizing synthetic polymers by MALDI MS. Anal Chem . 1998; 70 456-461
- 9 Harvey D J. Matrix-assisted laser desorption ionisation mass spectrometry of oligosaccharides and glycoconjugates. J Chromatogr A . 1996; 720 429-446
- 10 Karas M, Bahr U. Matrix-assisted laser desorption-ionization (MALDI) mass spectrometry: principles and applications. Selected topics, Mass Spectrom Biomolecular Sciences. NATO ASI Series C . 1997; 504 33-53
- 11 Juhasz P, Biemann K. Mass spectrometric molecular-weight determination of highly acidic compounds of biological significance via their complexes with basic polypeptides. Proc Natl Acad Sci USA . 1994; 91 4333-4337
- 12 Juhasz P, Biemann K. Utility of non-covalent complexes in the matrix-assisted laser desorption ionization mass spectrometry of heparin-derived oligosaccharides. Carbohydr Res . 1995; 270 131-147
- 13 Kjellen L, Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem . 1991; 60 443-475
- 14 Casu B. Structure and biological activity of heparin. Adv Carbohydr Chem Biochem . 1985; 43 51-134
- 15 Lindahl U, Lidholt K, Spillmann D. More to ``heparin'' than anticoagulation. Thromb Res . 1994; 75 1-32
- 16 Harvey J H. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev . 1999; 18 349-451
- 17 Keiser N, Venkataraman G, Shriver Z. Direct isolation and sequencing of specific protein-binding glycosaminoglycans. Nat Med . 2001; 7 123-128
- 18 Shriver Z, Raman R, Venkataraman G. Sequencing of 3-O-sulfate containing decasaccharides with a partial antithrombin III binding site. Proc Natl Acad Sci USA . 2000; 97 10359-10364
- 19 Yeung B, Marecak D. Molecular weight determination of hyaluronic acid by gel filtration chromatography coupled to matrix-assisted laser desorption ionization mass spectrometry. J Chromatogr A . 1999; 852 573-581
- 20 Schiller J, Arnhold J, Bernard S. Cartilage degradation by hyaluronate lyase and chondroitin ABC lyase: a MALDI-TOF mass spectrometric study. Carbohydr Res . 1999; 318 116-122
- 21 Vann W F, Schmidt M A, Jann B. The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:h4. A polymer similar to desulfo-heparin. Eur J Biochem . 1981; 116 359-364
- 22 Garozzo D, Impallomeni G, Spina E. Matrix-assisted laser desorption/ionization mass spectrometry of polysaccharides. Rapid Commun Mass Spectrom . 1995; 9 937-941
- 23 Casu B. Methods of structural analysis. In: Lane DA, Lindahl U, eds. Heparin: Chemistry and Biology London: Arnold 1989: 25-49
- 24 Larnkjaer A, Hansen S H, Ostergaard P B. Isolation and characterization of hexasaccharides derived from heparin. Analysis by HPLC and elucidation of structure by 1H-NMR. Carbohydr Res . 1995; 266 37-52
- 25 Jeske W, Iqbal O, Gonella S. Pharmacologic profile of a low-molecular-weight heparin depolymerized by γ-irradiation. Semin Thromb Hemost . 1995; 21 201-211
- 26 Casu B, Oreste P, Torri G. The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and 13C-NMR studies. Biochem J . 1997; 14(Suppl 1) S89(Abst)
- 27 Faham S, Hileman R E, Fromm J R. Heparin structure and interactions with basic fibroblast growth factor. Science . 1996; 271 1116-1120
- 28 Hileman R E, Fromm J R, Weiler J M. Glycosaminoglycan-protein interactions: Definitions of consensus sites in glycosaminoglycan binding proteins. Bioessays . 1998; 20 156-167
- 29 Venkataraman G, Shriver Z, Davis J. Fibroblast growth factors 1 and 2 are distinct in oligomerization in the presence of heparin-like glycosaminoglycans. Proc Natl Acad Sci USA . 1999; 96 1982-1987
- 30 Venkataraman G, Shriver Z, Raman R. Sequencing complex polysaccharides. Science . 1999; 286 537-542
- 31 Venkataraman G, Sasisekharan V, Herr A B. Preferential self-association of basic fibroblast growth factor is stabilised by heparin during receptor dimerization and activation. Proc Natl Acad Sci USA . 1996; 93 845-850
- 32 DiGabriele A D, Lax I, Chen D I. Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature . 1998; 393 812-817
- 33 Schlessinger J, Plotnikov A D, Hendrickson W A. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Molec Cell . 2000; 6 743-750
- 34 Cifonelli J A. Nitrous acid depolymerization of glycosaminoglycans. Methods Carbohydr Chem . 1976; VII 139-141
- 35 Jaseja M, Rey R N, Sauriol F. Novel regio-and stereoselective modifications of heparin in alkaline solution. NMR spectroscopic evidences. Can J Chem . 1989; 67 1449-1458
- 36 Chai W, Luo J, Lim C K. Characterization of heparin oligosaccharide mixtures as ammonium salts using electrospray mass spectrometry. Anal Chem . 1998; 70 2060-2066