Anästhesiol Intensivmed Notfallmed Schmerzther 2001; 36(11): 664-682
DOI: 10.1055/s-2001-18051
ÜBERSICHT
© Georg Thieme Verlag Stuttgart · New York

Ontogenese anästhesierelevanter Rezeptoren

Ontogenesis of Anesthesia-Relevant ReceptorsB. Reimann, F.-J. Kretz
  • Klinik für Anästhesiologie und operative Intensivmedizin,
    Olgahospital, Stuttgart
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
26. Oktober 2001 (online)

Zusammenfassung.

Die Besonderheiten in der medikamentösen Therapie bei Kindern, insbesondere bei Früh-, Neugeborenen und Säuglingen haben ihren Ursprung nicht nur in der durch Organunreife (Leber, Niere etc.) bedingten speziellen Pharmakokinetik, sondern auch in pharmakodynamischen Faktoren, die aus einer noch nicht abgeschlossenen Reifung des Nervensystems resultieren. Auf allen Ebenen der Informationsweiterleitung - vom Nerv mit der elektrischen Übertragung bis zu der Synapse mit der Neurotransmitterübertragung - liegen noch Reifungsdefizite vor, auch wenn die Informationswege und damit ihre Schaltkreise schon prinzipiell angelegt sind. In dem vorliegenden Übersichtsartikel soll schwerpunktmäßig auf die Ontogenese der Rezeptorsysteme eingegangen werden, ein kleinerer Teil des Beitrages widmet sich auch der Frage der Myelinisierung. Die Zahl und Verteilung der Rezeptoren darf bei Früh-, Neugeborenen und Säuglingen jedoch nicht nur auf dem Hintergrund der Funktion im Erwachsenenalter - Informationsweiterleitung und -modifikation - gesehen werden, vielmehr haben die Rezeptoren während des Reifungsprozesses wichtige Funktionen für die Entwicklung der Nervenbahnen, die Ausbildung der Synapsen und die Differenzierung der Nervenzellen selbst. Prinzipiell kann sich die Zahl der Rezeptoren perinatal wie folgt verändern: 1. Kontinuierlicher Anstieg bis zur Reife, 2. Anstieg bis zu einem Maximum während der Entwicklung mit anschließender leichter oder stärkerer Reduktion, 3. Initial hohe Rezeptorzahl mit anschließender deutlicher Reduktion, 4. In etwa gleich bleibende Rezeptorzahl während der gesamten Entwicklung oder 5. nur vorübergehende Expression während der Entwicklung. In dieser Arbeit soll anhand tierexperimenteller und humanpharmakologischer Studien ein Überblick über die Ontogenese der Opioid-, NMDA-, GABA-, Dopamin-, Acetylcholin- und Serotoninrezeptoren gegeben werden. Aus den vorliegenden tierexperimentellen und humanpharmakologischen Daten sollen vorsichtige Schlüsse gezogen werden, wie die Besonderheiten in den Wirkungen der Medikamente bei Kindern (z. B. verstärkte Atemdepression nach Opioidgabe bei Früh- und Neugeborenen, höhere Inzidenz paradoxer Reaktionen auf Benzodiazepine etc.) erklärt werden können.

Ontogenesis of Anesthesia-Relevant Receptors.

The particularities in the medical treatment of children, especially those concerning premature infants, new-borns and babies, do not only stem from the immaturity of the organs (kidneys, liver etc.) but also from pharmacokinetic factors which are result of the immaturity of the brain. There are maturation deficits on all levels of transmission, from the nerve with electric transmission to the synapsis with neurotransmitter propagation, even though the whole system is basically laid out. The presented paper concerns itself mainly with the ontogenesis of the receptor-systems, a small part is dedicated to the question of myelination. Number and distribution of the receptors in premature or new-born infants and babies should not only be viewed in the context of the future function in mature humans (i.e. transmission and modification of information) - the receptors themselves are important factors in the maturing process of neuronal pathways, synapses and the differentiation of the neuronal cells themselves. Basically the number of receptors can change as follows: 1. Continuous increase until maturity, 2. Increase to a maximum during maturation with slight or stronger decrease after, 3. High initial number with following distinct decrease, 4. Even number throughout maturation, 5. Passing expression during maturation. The aim of this paper is to present an overview on the ontogenesis of opioid-, NMDA-, GABA-, dopamine-, acetylcholine- and serotoninreceptors. The data derived from animal and human-pharmacological experiments will be used to carefully conclude how the particularities of drug reactions of children (i.e. increased respiratory depression after opioid application in premature and newborn infants, higher incidence of paradox reactions to benzodiazepines etc.) can be explained.

Literatur

  • 1 Hori Y, Watanabe S. Morphine-sensitive late components of the flexion reflex in the neonatal rat.  Neurosci Lett. 1987;  78 91-96
  • 2 Lombard M C, Besson J M. Attempts to gauge the relative importance of presynaptic and postsynaptic effects of morphine on the transmission of noxious messages in the dorsal horn of the rat spinal cord.  Pain. 1989;  37 335-345
  • 3 Marsh D F, Hatch D J, Fitzgerald M. Opioid systems and the newborn.  Br J Anaesth. 1997;  79 787-795
  • 4 Mansour A, Watson S J. Anatomical distribution of oopioid receptors in mammalians: an overview. In: Hertz A (ed) Opioids. Volume I. Berlin; Springer 1993: 79-106
  • 5 Villinger J W, Kenneth M T, Gluckman P D. Ontogenesis of opiate receptors in regions of the ovine brain.  Pediatric Pharmacology. 1982;  2 349-356
  • 6 Attali B, Saya D, Vogel Z. Pre- and postnatal development of opiate receptor subtypes in rat spinal cord.  Dev Brain Res. 1990;  53 97-102
  • 7 Georges F, Normand E, Bloch B, Le Moine C. Opioid receptor gene expression in the rat brain during ontogeny, with special reference to the mesostriatal system: an in situ hybridization study.  Dev Brain Res. 1998;  109 187-199
  • 8 Sircar R, Zukin S R. Characterization of specific sigma opiate/phencyclidine (PCP)-binding sites in the human brain.  Life Sci. 1983;  33 259-262
  • 9 Rahman W, Dashwood M R, Fitzgerald M, Aynsley-Green A, Dickenson A H. Postnatal development of multiple opioid receptors in the spinal cord and development of spinal morphine analgesia.  Dev Brain Res. 1998;  108 239-254
  • 10 Kar S, Quirion R. Neuropeptide receptors in developing and adult rat spinal cord: an in vitro quantitative autoradiography study of calcitonin gene-related peptide, neurkinins, µ-opioid, galanin, somatostatin, neurotensin and vasoactive intestinal polypeptide receptors.  J Comp Neurol. 1995;  354 253-281
  • 11 Kitchen I, Kelly M, Paz Viveros M. Ontogenesis of κ-opioid receptors in rat brain using 3HU-69593 as a binding ligand.  European J Pharmacol. 1990;  175 93-96
  • 12 Stevens C S, Lacey C B, Miller K E, Elde R P, Seybold V S. Biochemical characterization and regional quantification of µ, δ and κ opioid binding sites in spinal cord.  Brain Res. 1991;  550 77-85
  • 13 Spain J W, Roth B L, Cosica C J. Differential ontogeny of multiple opioid receptors ().  J Neurosci. 1985;  5 584-588
  • 14 Besse D, Lombard M C, Besson J M. Autoradiographic distribution of µ, δ and κ opioid binding sites in the superficial dorsal horn, over the rostrocaudal axis of the rat spinal cord.  Brain Res. 1991;  548 287-291
  • 15 Rius R A, Barg J, Bem W T, Coscia C J, Loh Y P. The prenatal developmental profile of expression of opioid peptides and receptors in the mouse brain.  Dev Brain Res. 1991;  58 237-241
  • 16 Bayon A, Shoemaker W J, Bloom F E, Mauss A, Guillemin R. Perinatal development of the endorphin- and enkephalin-containing systems in the rat brain.  Brain Res. 1979;  179 93-101
  • 17 Charnay Y, Paulin C, Dray F, Dubois P M. Distribution of enkephalin in the human fetus and spinal cord: an immunofluorescence study.  J Comp Neurol. 1984;  223 415-423
  • 18 Fitzgerald M. The prenatal growth of fine diameter afferents into the rat spinal cord - a transganglionic study.  J Comp Neurol. 1987;  261 98-104
  • 19 Fitzgerald M. The development of activity evoked by fine diameter cutaneous fibres in the spinal cord fo the newborn.  Neursci Lett. 1988;  86 161-166
  • 20 Fitzgerald M, Gibson S J. The postnatal physiological and neurochemical development of peripheral sensory C-fibres.  Neuroscience. 1984;  13 933-944
  • 21 Cabalka L M, Ritchie T C, Coulter J D. Immunolocalization and quantitation of a novel terminal protein in spinal cord development.  J Comp Neurol. 1990;  295 83-91
  • 22 Faber E SL, Chambers J P, Brugger F, Evans R H. Depression of A- and C-fibre evoked segmental reflexes by morphine and clonidine in the in vitro spinal cord of the neonatal rat.  Br J Pharmacol. 1997;  120 1390-1396
  • 23 Guy E R, Abbott F V. the behavioural response to formalin pain in preweanling rats.  Pain. 1992;  51 81-90
  • 24 Hammond D L, Ruda M A. Developmental alterations in nociceptive threshold, immunoreactive calcitonin-gene related peptide, substance P and fluoride resistant acid phosphatase in neonatally capsicain treated rats.  J Comp Neurol. 1991;  312 436-450
  • 25 Zenz J. Lehrbuch der Schmerztherapie. Stuttgart; Wiss. Verlagsgesellschaft mbH 1993
  • 26 Fitzgerald M, Koltzenburg M. The functional development of descending inhibitory pathways in the dorsolateral funiculus of the newborn rat spinal cord.  Dev Brain Res. 1986;  24 261-270
  • 27 Fitzgerald M, Butcher T, Shortland P. Developmental changes in the laminar termination of A fibre cutaneous sensory afferents in the rat spinal cord dorsal horn.  J Comp Neurol. 1994;  348 225-233
  • 28 Steine-Martin A, Hauser K F. Opioid-dependant growth of glial cultures: suppression of astrocyte DANN synthesis by met-enkephalin.  Life Sci. 1990;  46 91-98
  • 29 Hauser K F, McLaughlin P J, Zagon I S. Endogenous opioids regulate dendritic growth and spine formation in developing rat brain.  Brain Res. 1987;  416 157-161
  • 30 Hauser K F, McLaughlin P J, Zagon I S. Endogenous opioid systems and the regulation of dendritic growth and spine formation.  J Comp Neurol. 1989;  281 13-22
  • 31 Steine-Martin A, Gurwell J A, Hauser K F. Morphine alters astrocyte growth in primary cultures of mouse glial cells: evidence for a direct effect of opiates on neuronal mutation.  Dev Brain Res. 1991;  60 1-7
  • 32 Zagon I S, McLaughlin P J. Naltrexone modulates body and brain development in rats: a role for endogenous opioid systems in growth.  Life Sci. 1984;  35 2057-2064
  • 33 Abbott F V, Guy E R. Effects of morphine, pentobarbital and amphetamine on formalin-induced behaviours in infant rats. Sedation versus specific suppression of pain.  Pain. 1995;  62 303-312
  • 34 Kupferberg J H, Way L E. Pharmacologic basis for the increased sensitivity of the newborn rat to morphine.  J Pharmacol Exp Ther. 1963;  141 105-112
  • 35 McLaughlin C R, Dewey W L. A comparison of the antinociceptive effects of opioid agonists in neonatal and adult rats in phasic and tonic nociceptive tests.  Pharmacol Biochem Behav. 1994;  49 1017-1023
  • 36 McLaughlin C R, Tao Q, Abood M E. Analysis of the antinociceptive actions of the kappa-opioid agonist enadoline (CI-977) in neonatal and adult rats: comparison to kappa-opioid receptor mRNA ontogeny.  Drug Alcohol Depend. 1995;  38 261-269
  • 37 Giordano J, Barr G A. Morphine- and ketocyclazocine-induced analgesia in the developing rat: differences due to type of noxious stimulus and body topography.  Dev Brian Res. 1987;  32 247-253
  • 38 Barr G, Paredes W, Erikson K L, Zukin S R. κ-opioid receptor-mediated analgesia in the developing rat.  Dev Brain Res. 1986;  29 145-152
  • 39 Anand K JS, Hansen D D, Hickey R P. Hormonal-metabolic stress response in neonates undergoing cardiac surgery.  Anesthesiology. 1990;  73 661-670
  • 40 Freye E. Development of sensory information processing - the ontogenesis of opioid binding sites in nociceptive afferents and their significance in the clinical setting.  Acta Anaesthesiol Scand Suppl. 1996;  109 98-101
  • 41 Zhang A Z, Pasternak G W. Ontogeny of opioid pharmacology and receptors: high and low affinity site differences.  Eur J Pharmacol. 1981;  73 2940
  • 42 Van Praag H, Frenk H. The effects of systemic morphine on behaviour and EEG in newborn rats.  Dev Brain Res. 1992;  67 19-26
  • 43 Mao J, Price D D, Mayer D J. Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C.  J Neurosci. 1994;  14 2301-2312
  • 44 Arnér S, Meyerson B A. Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain.  Pain. 1988;  33 11-23
  • 45 Dunah A W, Yasuda R P, Luo J, Wang Y, Prybylowski K L, Wolfe B B. Biochemical Studies of the Structure and Function of the NMDA-Subtype of Glutamate Receptors.  Mol Neurobiol. 1999;  19 ((2)) 151-179
  • 46 Raigorodsky G, Urca G. Intrathecal NMDA activates both nociceptive and antinociceptive systems.  Brain Res. 1987;  422 158-162
  • 47 Aoki C, Venkatesan C, Go C G, Mong J A, Dawson T M. Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats.  J Neurosci. 1994;  14 5202-5222
  • 48 Liu M, Wang H, Sheng M, Jan L Y, Basbaum A I. Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn.  Proc Natl Acad Sci USA. 1994;  91 8383-8387
  • 49 Luo J, Bosy T Z, Wang Y, Yasuda R P, Wolfe B B. Ontogeny of NMDA R1 subunit protein expression in five regions of rat brain.  Dev Brain Res. 1996;  92 10-17
  • 50 Monyer H, Burnashev H, Laurie D J, Sakmann B, Seeburg P H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.  Neuron. 1994;  12 529-540
  • 51 Wang Y, Bosy T Z, Yasuda R P, Grayson D R, Vicini S, Pizzorusso T, Wolfe B B. Characterization of NMDA receptor subunit-specific antibodies: distribution of NR2A and NR2B receptor subunits in rat brain and ontogenic profile in the cerbellum.  J Neurochem. 1995;  65 176-183
  • 52 Wenzel A, Fritschy J, Mohler H, Benke D. NMDA receptor heterogeneity during post-natal development of the rat brain: differential expression of the NR2A, NR2B and NR2C subunit proteins.  J Neurochem. 1997;  68 469-478
  • 53 Didier M, Xu M, Berman S A, Bursztajn S. Differential expression and co-assembly of NMDAz1 and e subunits in the mouse cerebellum during postnatal development.  NeuroReport. 1995;  6 2255-2259
  • 54 Sheng M, Cummings J, Roldan L A, Jan Y N, Jan L Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex.  Nature. 1994;  368 144-147
  • 55 Wenzel A, Villa M, Mohler H, Benke D. Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain.  J Neurochem. 1996;  66 1240-1248
  • 56 Dunah A W, Yasuda R P, Wang Y H, Luo J, Davila-Garcia M I, Gbadegesin M, Vicini S, Wolfe B B. Regional and ontogenic expression of the NMDA receptor subunit NR2D protein in rat brain using a subunit-specific antibody.  J Neurochem. 1996;  67 2335-2345
  • 57 Fitzgerald M, Jennings E. The postnatal development of spinal sensory processing.  Proc Natl Acad Sci USA. 1999;  96 7719-7722
  • 58 Hori Y, Kanda K. Developmental alterations in NMDA receptor-mediated Ca2+i elevation in substantia gelatinosa neurons of neonatal rat spinal cord.  Dev Brain Res. 1994;  80 141-148
  • 59 Hofer M, Constantine-Paton M. Regulation of N-methyl-D-aspartate (NMDA) receptor function during the rearrangement of developing neuronal connections.  Prog Brain Res. 1994;  102 277-285
  • 60 Mendelson B. Chronic embryonic MK-801 exposure disrupts the somatotopic organization of cutaneous nerve projections in the chick spinal cord.  Dev Brain Res. 1994;  82 152-166
  • 61 Dickenson A, Besson J M. The pharmacology of pain. Berlin; Springer 1997
  • 62 Doble A, Martin I L. The GABAA/Benzodiazepine receptor as a target for psychoactive drugs. Heidelberg; Springer 1996: 27-50 und 117 - 120
  • 63 Sivilotti L, Nistri A. GABA receptor mechanisms in the central nervous system.  Prog Neurobiol. 1991;  36 35-92
  • 64 Kaila K. Ionic basis of GABAA receptor channel function in the nervous system.  Prog Neurobiol. 1994;  42 489-537
  • 65 Dutar P, Nicoll R A. A physiological role for GABAB receptors in the central nervous system.  Nature Lond. 1998;  332 156-158
  • 66 Dutar P, Nicoll R A. Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties.  Neuron. 1988;  1 585-591
  • 67 Bettler B, Kaupmann K, Bowery N. GABAB receptors: drugs meets clones.  Curr Opin Neurobiol. 1998;  8 345-350
  • 68 Brooksbank B WL, Atkinson D J, Balázs R. Biochemical development of the human brain. II. Some parameters of the GABAergic System.  Dev Neurobiol. 1981;  4 188-200
  • 69 LoTurco J J, Kriegstein A R. Clusters of coupled neuroblasts in embryonic neocortex.  Science Wash DC. 1991;  252 563-566
  • 70 Paysan J, Fritschy J M. GABAA-receptor subtypes in developing brain. Actors of Spectators?.  Perpect Dev Neurobiol. 1998;  5 179-192
  • 71 Zhang J H, Sato M, Araki T, Tohyama M. Postnatal ontogenesis of neurons containing GABAA α1 subunit mRNA in the rat forebrain.  Mol Brain Res. 1992;  16 193-203
  • 72 Luhmann H J, Prince D A. Control of NMDA receptor-mediated activity by GABAergic mechanisms in mature and developing rat neocortex.  Dev Brain Res. 1990;  54 287-290
  • 73 Luhmann H J, Prince D A. Transient expression of polysynaptic NMDA receptor-mediated activity during neocortical development.  Neurosci Lett. 1990;  111 109-115
  • 74 Gaiarsa J L, McLean H, Congar P, Leinekugel X, Khazipov R, Tseeb V, Ben-Ari Y. Postnatal maturation of gamma-aminobutyric acid A- and B-mediated inhibition in the CA3 hippocampal region of the rat.  J Neurobiol. 1995;  26 339-349
  • 75 Gaiarsa J L, Tseeb V, Ben-Ari Y. Postnatal development of pre- and postsynaptic GABAB-mediated inhibitions in the CA3 hippocampal region of the rat.  J Neurophysiol. 1995;  73 246-255
  • 76 Fukuda A, Mody I, Prince D A. Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex.  J Neurophysiol. 1993;  70 448-452
  • 77 Strata F, Cherubini E. Transient expression of a novel type of GABA response in rat CA3 hippocampal neurones during development.  J Physiol. 1994;  480 493-503
  • 78 Ben-Ari Y, Tseeb V, Raggozzino D, Khazipov R, Gaiarsa J L. Gamma-aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life.  Prog Brain Res. 1994;  102 261-273
  • 79 Gonzales R, Fuchs J L, Droge M H. Distribution of NMDA receptor binding in developing mouse spinal cord.  Neurosci Lett. 1993;  151 134-137
  • 80 Wang J, Reichling D B, Kyrozis A, MacDermott A B. Developmental loss of GABA- and glycine-induced depolarization an CA2+ transients in embryonic rat dorsal horn neurons in culture.  Eur J Neurosci. 1994;  6 1275-1280
  • 81 Bacon E, de Barry J, Gombos G. Differential ontogenesis of type I and II benzodiazepine receptors in mouse cerebellum.  Dev Brain Res. 1991;  58 283-287
  • 82 Malagon M, Vaudry H, van Strien F, Pelletier G, Garcia-Navarro F, Tonon M C. Ontogeny of Diazepam-binding inhibitor-related peptides (Endozepines) in the rat brain.  Neuroscience. 1993;  57 777-786
  • 83 Baldessarini R J, Tarazi F I. Brain dopamine receptors: A primer on their current status, basic and clinical.  Harv Rev Psychiatry. 1996;  3 301-325
  • 84 Xu S, Monsma F J, Sibley D, Creese I. Regulation of D1A and D2 dopamine receptor mRNA during ontogenesis, lesion and chronic antagonist treatment.  Life Sci. 1991;  50 383-396
  • 85 Tarazi F I, Tomasini E C, Baldessarini R J. Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: an autoradiographic study.  Dev Neurosci. 1999;  21 43-49
  • 86 Tarazi F I, Tomasini E C, Baldessarini R J. Postnatal development of dopamine D4-like receptors in rat forebrain regions: comparison with D2-like receptors.  Dev Brain Res. 1998;  110 227-233
  • 87 Teicher M H, Andersen S L, Hostetter J C. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens.  Dev Brain Res. 1995;  89 167-172
  • 88 Gelbard H A, Teicher M H, Faedda G, Baldessarini R J. Postnatal development of dopamine D1 and D2 receptor sites in rat striatum.  Dev Brain Res. 1989;  49 123-130
  • 89 Teicher M H, Barber N I, Gelbard H A, Gallitano A L, Campbell A, Marsh E, Baldessarini R J. Developmental differences in acute nigrostriatal and mesocorticolimbic system response to haloperidol.  Neuropsychopharmacology. 1993;  9 147-156
  • 90 Diaz J, Ridray S, Mignon V, Griffon V, Schwartz J C, Sokoloff P. Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain.  J Neurosci. 1997;  17 4282-4292
  • 91 Campbell A, Baldessarini R J, Teicher M H. Decreasing sensitivity to neuroleptic agents in developing rats; evidence for a pharmacodynamic factor.  Psychopharmacology. 1998;  94 46-51
  • 92 Hamm R J, Knisely J S. Developmental differences in the analgesia produced by the central cholinergic system.  Dev Psychobiol. 1987;  20 345-354
  • 93 Schwartz R D. Autoradiograhpic distribution of high affinity muscarinic and nicotinic cholinergic receptors labelled with 3Hacetylcholine in rat brain.  Life Sci. 1986;  38 2111-2119
  • 94 Coyle J T, Yamamura H I. Neurochemical aspects of the ontogenesis of cholinergic neurons in the rat brain.  Brain Research. 1976;  118 429-440
  • 95 Aubert I, Cécyre D, Gauthier S, Quirion R. Comparative ontogenic profile of cholinergic markers, including nicotinic and muscarinic receptors, in the rat brain.  J Comp Neurol. 1996;  368 31-55
  • 96 Kuhar M J, Bridsall N JM, Burgen A SV, Hulme E C. Ontogeny of muscarinic receptors in rat brain.  Brain Res. 1980;  184 375-383
  • 97 McGehee D, Role L. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons.  Annu Rev Physiol. 1995;  57 521-546
  • 98 Flores C M, Rogers S W, Pabreza L A, Wolfe B B, Kellar K J. A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is up-regulated by chronic nicotine treatment.  Mol Pharmacol. 1992;  41 31-37
  • 99 Zhang X, Liu C, Miao H, Gong Z H, Nordberg A. Postnatal changes of nicotinic acetylcholine receptor α2, α3, α4, α7 and β2 subunit genes expressionin rat brain.  Int J Dev Neuroscience. 1998;  16 507-518
  • 100 Zoli M, Le Novère N, Hill J AJ, Changeux J P. Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous system.  J Neurosci. 1995;  15 1912-1939
  • 101 Witzemann V, Barg B, Nishikawa Y, Sakmann B, Numa S. Differential regulation of muscle acetylcholine receptor γ and ε subunit mRNAs.  FEBS Lett. 1987;  223 104-112
  • 102 Corriveau R A, Romano S J, Conroy W G, Oliva L, Berg D K. Expression of neuronal acetylcholine receptor genes in vertebrat skeletal muscle during development.  J Neurosci. 1995;  15 1372-1383
  • 103 Thoenen H. The changing scene of neurotrophic factors.  Trends Neurosci. 1991;  14 165-170
  • 104 Fischer U, Reinhardt S, Albuquerque E X, Maelicke A. Expression of functional α7 nicotinic acetylcholine receptor during mammalian muscle development and denervation.  Eur J Neursci. 1999;  11 2856-2864
  • 105 Ladinsky H, Consolo S, Peri G, Garattini S. Acetylcholine, choline and choline acetyltransferase activity in the developing brian of normal and hypothyroid rats.  J Neurochem. 1972;  19 1947-1952
  • 106 Dörner G, Bluth R, Tönjer R. Acetylcholine concentrations in the developing brain appear to affect emotionality and mental capacity in later life.  Acta Biol Med Germ. 1982;  41 721-723
  • 107 Kotas A M, Prince A K. High-affinity uptake of choline, a marker for cholinergic nerve terminals, is not specific in developing rat brain.  Dev Brain Res. 1987;  35 175-181
  • 108 Represa A, Chanez C, Flexor M A, Ben-Ari V. Development of cholinergic system in control and intra-uterine growth retarded rat brain.  Dev Brain Res. 1989;  47 71-79
  • 109 Balduini W, Costa L G. Effects of ethanol on muscarinic receptor-stimulated phosphoinositide metabolism during brain development.  J Pharmacol Exp Ther. 1989;  250 541-547
  • 110 Rotter A, Field P M, Raisman G. Muscarinic receptors in the central nervous system of the rat. III. Postnatal development of binding of 3H-propylbenzilylcholine mustard.  Brain Res Rev. 1979;  1 185-205
  • 111 Hohman C F, Brooks A C, Coyle J T. Neonatal lesions of the basal forebrain cholinergic neurons result in abnormal cortical development.  Dev Brain Res. 1988;  42 246-253
  • 112 Ashkenazi A, Ramachandran J, Capon D J. Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes.  Nature. 1989;  340 146-150
  • 113 Whitaker-Azmitia P M, Lauder J M, Shemmer A, Azmitia E C. Postnatal changes in serotonin receptors following prenatal alterations in serotonin levels: further evidence for functional fetal serotonin 1 receptors.  Dev Brain res. 1987;  33 285-289
  • 114 Barnes N M, Sharp T. A review of central 5-HT receptors and their function.  Neuropharmacology. 1999;  38 1083-1152
  • 115 Pranzatelli M R, Galvan I. Ontogeny of 125Iiodocyanopindolol-labelled 5-hydroxytryptamine1B-binding sites in the rat CNS.  Neurosci Lett. 1994;  167 166-170
  • 116 Koek W, Jackson A, Colpaert F C. Behavioural pharmacology of antagonists at 5-HT2/5HT1C receptors.  Neurosci Biobehav Rev. 1992;  16 95-105
  • 117 Leysen J E, Janssen P MF, Schotte A, Luyten W H, Megens A A. Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacology and clinical effects - role of 5-HT2 receptors.  Psychopharmacology. 1993;  112 S40-S54
  • 118 Parker R MC, Bentley K R, Barnes N M. Allosteric modulation of 5-HT3 receptors: focus on alcohols and anaesthetic agents.  Trends pharmacol Sci. 1996;  17 95-99
  • 119 Eglen R M, Jasper J R, Chang D J, Martin G R. The 5-HT7 receptor: orphan found.  Trends Pharmacol Sci. 1997;  18 104-107
  • 120 Steward L J, Ge J, Stowe R L, Brown D C, Bruton R K, Stokes P R, Barnes N M. Ability of 5-HT4 receptor ligands to modulate rat striatal dopamine release in vitro and in vivo.  Br J Pharmacol. 1996;  117 55-62
  • 121 Galeotti N, Ghelardini C, Bartolini A. Role of 5-HT4 receptors in the mouse passive avoidance test.  J Pharmacol Exp Ther. 1998;  286 1115-1121
  • 122 Waeber C, Sebben M, Bockaert J, Dumuis A. Regional distribution and ontogeny of 5-HT4 binding sites in rat brain.  Beh Brain Res. 1996;  73 259-262
  • 123 Wu C, Dias P, Kumar S, Lauder J M, Singh S. Differential expression of serotonin 5-HT2 receptors during rat embryogenesis.  Dev Neurosci. 1999;  21 22-28
  • 124 Bar-Peled O, Gross-Isseroff R, Ben-Hur H, Hoskins I, Groner Y, Biegon A. Fetal human brain exhibits a prenatal peak in the density of serotonin 5 HT1A receptors.  Neurosci Lett. 1991;  127 173-176
  • 125 Zilles K, Schleicher A, Glaser T, Traber J, Rath M. The ontogenic development of serotonin (5-HT1) receptors in various cortical regions of the rat brain.  Anat Embryol. 1985;  172 255-264
  • 126 Vizuete M L, Venero J L, Traiffort E, Vargas C, Machado A, Cano J. Expression of 5-HT7 receptor mRNA in rat brain during postnatal development.  Neurosci Lett. 1997;  227 53-56
  • 127 Davel G, Verge D, Becerril A, Gozlan H, Spampinato U, Hamon M. Transient expression of 5-HT1A receptor binding sites in some areas of the rat CNS during postnatal development.  Int J Dev Neurosci. 1987;  5 171-180
  • 128 Pranzatelli M R. Regional differences in the ontogeny of 5-hydroxytryptamine-1C binding sites in rat brain and spinal cord.  Neurosci Lett. 1993;  149 9-11
  • 129 Lauder J M, Wallace J A, Krebs H, Petrusz P, McCarthy K. In vivo and in vitro development of serotonergic neurons.  Brain Res Bull. 1982;  9 605-625
  • 130 Rorig B, Sutor B. Serotonin regulates gap junction coupling in the developing rat somatosensory cortex.  Eur J Neurosci. 1996;  8 1685-1695
  • 131 Whitaker-Azmitia P W. The role of serotonin and serotonin receptors in development of the mammalian nervous system. In: Zagon IS, McLaughlin PJ (eds) Receptors in the developing nervous system. Volume 2. London; Chapman & Hall 1993: 43-53
  • 132 Sauer B, Kammradt G, Krauthausen I, Kretschmann H J, Lange H W, Wingert F. Qualitative and quantitative development of the visual cortex in man.  J Comp Neurol. 1983;  214 441-450
  • 133 Huttenlocher P R, de Courten C. The development of synapses in striate cortex of man.  Human Neurobiol. 1987;  6 1-9
  • 134 Wolff J, Missler M. Synaptic remodelling and elimination as integral processes of synaptogenesis.  APMIS Suppl. 1993;  40 ((101)) 9-23
  • 135 Michaelis M, Niemann G. Stadien der Hirnentwicklung und ihre Störungen. In: Entwicklungsneurologie und Neuropädiatrie Stuttgart; Thieme 1999: 16-31
  • 136 Salzer J L, Bunge R P, Glaser L. Studies of Schwann cell proliferation. III. Evidence for the surface localization of the neurite mitogen.  J Cell Biol. 1980;  84 767-778
  • 137 Skoff R P, Toland D, Nast E. Pattern of myelination and distribution of neuroglial cells along the developing optic system of the rat and rabbit.  J Comp Neurol. 1980;  191 237-253
  • 138 Waxman S, Black J A. Ontogenesis of the axolemma and axoglial relationships in myelinated fibers: electrophysiological and freeze-fracture correlates of membrane plasticity.  Intern Rev Neurobiol. 1983;  24 433-484
  • 139 Lauffer H, Wenzel D. Maturation of central somatosensory conduction time in infancy and childhood.  Neuropediatrics. 1986;  17 72-74

Dr. B. Reimann

Klinik für Anästhesiologie
und Operative Intensivmedizin
Olgahospital

Bismarckstraße 8, 70176 Stuttgart

    >