Abstract
In order to develop a new route to ketal or spiroketal subunits present in numerous natural products, condensation of acetylacetone bis(silyl)enol ether 2-Si or acetylacetone lithium dianion 2-Li with various anti α,β-disubstituted β-hydroxy aldehydes 11 was studied. It has been shown that under Lewis acid-promoted Mukaiyama conditions it is possible to realize such condensation reactions without formation of the well-known Danishefsky γ-pyrones 8 . The required 2-acetonyl-2,4-dihydroxytetrahydropyrans 1 for further synthetic purposes were prepared in good to high yields from the intermediate acyclic aldol adduct 7 . Particularly crucial are i) the deprotection conditions of the O -silyl protected acyclic intermediate 7 with tetrabutylammonium fluoride in dimethylformamide, and ii) the subsequent montmorillonite K10-promoted protection of the hemiketal 1 hydroxy group. The parameters governing the stereoselectivity of the initial condensation reaction have been studied. Under apparent Felkin or anti-Felkin/Cram-chelate conditions, syn,anti -adducts are obtained with high selectivity from acetylacetone bis(silyl) enol ether 2-Si . Partial modulation of the stereoselectivity can be achieved through condensation of the acetylacetone lithium dianion 2-Li with aldehydes bearing bulky O -silyl protecting groups which allows a preferential access to the anti,anti triads.
Key words
silyl enols ethers - dianions - aldol reactions - cyclizations - chemoselectivity - diastereoselectivity - spiro compounds
References 1 Current address: Vivien Henryon, Rhône-Poulenc industrialisation, 24 Avenue Jean Jaurès, 69153 Décines-Charpieu, France. E-mail: Vivien.Henryon@CRIT.Rhone-Poulenc.com.
2 Current address: Jean-Pierre Férézou, Far-Manguinhos, Instituto Oswaldo Cruz, Rua Sizenando Nabuco, 100 Manguinhos, CEP 21041-250 Rio de Janeiro/RJ, Brazil, E-Mail: ferezou@gbl.com.br.
3a
Boivin B.
Tetrahedron
1987,
43:
3309
3b
Perron F.
Albizati KF.
Chem. Rev.
1989,
89:
1617
3c
Vaillancourt V.
Pratt NE.
Perron F.
Albizati KM. In
The Total Synthesis of Natural Products
Vol. 8:
Apsimon JW.
John Wiley & sons;
New York:
1992.
p.533
4a
Férézou J.-P.
Julia M.
Liu LW.
Li Y.
Pancrazi A.
Synlett
1991,
614
4b
Férézou J.-P.
Julia M.
Li Y.
Liu LW.
Pancrazi A.
Porteu F.
Bull. Soc. Chim. Fr.
1994,
131:
865
4c
Férézou J.-P.
Julia M.
Li Y.
Liu LW.
Pancrazi A.
Bull. Soc. Chim. Fr.
1995,
132:
428
5a For leading reviews on avermectins, see: Blizzard TA.
Org. Prep. Proced. Int.
1994,
26:
617
5b
Davies HG.
Green RH.
Chem. Soc. Rev.
1991,
20:
211
5c
Davies HG.
Green RH.
Chem. Soc. Rev.
1991,
20:
271
5d
Blizzard T.
Fisher MH.
Mrozik H.
Shih TL. In
Recent Progress in the Chemical Synthesis of Antibiotics
Springer-Verlag;
Berlin:
1990.
p.65
5e
Crimmins MT.
Hollis WG.
O’Mahony R. In
Studies in Natural Products Chemistry, Stereoselective Synthesis Part A
Vol. 1:
Elsevier;
Amsterdam:
1988.
p.435
5f
Davies HG.
Green RH.
Nat. Prod. Rep.
1986,
3:
87
6a
Werner G.
Hagenmaier H.
Albert K.
Kohlshorn H.
Drautz H.
Tetrahedron Lett.
1983,
24:
5193
6b
Werner G.
Hagenmaier H.
Drautz H.
Baumgartner A.
Zähner H.
J. Antibiot.
1984,
37:
110
6c For total syntheses: Evans DA.
Calter MA.
Tetrahedron Lett.
1993,
34:
6871
6d
Toshima K.
Jyojima T.
Yamaguchi H.
Murase H.
Yoshida T.
Matsumura S.
Nakata M.
Tetrahedron Lett.
1996,
37:
1069
6e
Toshima K.
Yamaguchi H.
Jyojima T.
Noguchi Y.
Nakata M.
Matsumura S.
Tetrahedron Lett.
1996,
37:
1073
6f
Toshima K.
Jyojima T.
Noguchi Y.
Yoshida T.
Murase M.
Nakata M.
Matsumura S.
J. Org. Chem.
1997,
62:
3271
6g
Scheidt KA.
Tasaka A.
Bannister TD.
Wendt MD.
Roush WR.
Angew. Chem. Int. Ed.
1999,
38:
1652
7a
Mukaiyama T.
Banno K.
Narasaka KJ.
J. Am. Chem. Soc.
1974,
96:
7503
7b For a review: Gennari C. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Heathcock CH.
Pergamon;
New York:
1991.
p.629
8a
Danishefsky SJ.
Kitahara H.
J. Am. Chem. Soc.
1974,
96:
7807
8b
Danishefsky SJ.
Kobayashi S.
Kervin JF.
J. Org. Chem.
1982,
47:
1983
8c
Danishefsky SJ.
Larson E.
Askin D.
Kato N.
J. Am. Chem. Soc.
1985,
107:
1246
8d
Danishefsky SJ.
Maring CJ.
J. Am. Chem. Soc.
1985,
107:
1269
9a Reviews: Danishefsky SJ.
Aldrichimica Acta
1986,
19:
59
9b
Danishefsky SJ.
De Ninno MP.
Angew. Chem., Int. Ed. Engl.
1987,
26:
15
9c
Danishefsky SJ.
Chemtracts
1989,
273
10a
Chan TH.
Brownbridge P.
Tetrahedron
1981,
37 Supplement No. 3:
387
10b
Chan TH.
Brook MA.
Tetrahedron Lett.
1985,
25:
2943
11a
Danishefsky SJ.
Harvey DF.
Quallich G.
Uang BJ.
J. Org. Chem.
1984,
49:
393
11b
Danishefsky SJ.
Pearson WH.
Harvey DF.
Maring CJ.
Springer JP.
J. Am. Chem. Soc.
1985,
107:
1256
11c
Peterson JR.
Kirchhoff EW.
Synlett
1990,
394
12a Mono-activated diols are more prone to [4+2] cycloadditions: Mujica MT.
Afonso MM.
Galindo A.
Palenzuela JA.
Tetrahedron
1996,
52:
2167
12b For an example of a true formal asymmetric cycloaddition reaction with 1-methoxy-3-[(trimethylsilyl)oxy]buta-1,2-diene: Schaus SE.
Branalt J.
Jacobsen EN.
J. Org. Chem.
1998,
63:
403
13 See Ref.
[7 ]
.
14
Deslongchamps P.
Stereoelectronic Effects in Organic Synthesis
Pergamon;
New York:
1983.
15a Reviews: Hoffmann RW.
Angew. Chem., Int. Ed. Engl.
1987,
26:
489
15b More focussed on such a triad: Hoffmann RW.
Dahmann G.
Andersen MW.
Synthesis
1994,
629
15c For a recent solution to this problem: Chemler SR.
Roush WR.
J. Org. Chem.
1998,
63:
3800 ; and references cited therein
16a See Ref.
[11b ]
16b For a related study with substituted mono-activated diene, see Ref.
[12 ]
17
Reetz MT.
Kesseler K.
J. Chem. Soc., Chem. Commun.
1984,
1079
18a
Heathcock CH.
Flippin LA.
J. Am. Chem. Soc.
1983,
105:
1667
18b
Reetz MT.
Tetrahedron Lett.
1984,
25:
729
18c
Evans DA.
Gage JR.
Tetrahedron Lett.
1990,
31:
6129
18d
Evans DA.
Duffy JL.
Dart MJ.
Tetrahedron Lett.
1994,
35:
8537
18e
Evans DA.
Dart MJ.
Duffy JL.
Tetrahedron Lett.
1994,
35:
8541
18f
Gustin DJ.
VanNieuwenhze MS.
Roush WR.
Tetrahedron Lett.
1995,
36:
3443
18g
Evans DA.
Dart MJ.
Duffy JL.
Yang MG.
Livingston AB.
J. Am. Chem. Soc.
1995,
117:
6619
18h
Bernardi A.
Scolastico C.
Chemtracts
1995,
8:
246 ; (research by D. A. Evans)
19a
Evans DA.
Gage JR.
Leighton JL.
J. Am. Chem. Soc.
1992,
114:
9434 (85:15 syn -Cram-control from syn -a-methyl-b-alkoxy aldehyde corresponding to the C21-C25 fragment of calyculin A)
19b
Tanimoto N.
Gerritz SV.
Sawabe A.
Noda T.
Filla SA.
Masamune S.
Angew. Chem., Int. Ed. Engl.
1994,
33:
673 (10:1 anti -Cram-chelate control from aldehyde 9 in the presence of TiCl4 )
19c
Paterson I.
Cumming JG.
Smith JD.
Ward RA.
Tetrahedron Lett.
1994,
35:
441
19d
Paterson I.
Cumming JG.
Smith JD.
Ward RA.
Yeung K.-S.
Tetrahedron Lett.
1994,
35:
3405 (>97:1 syn -Cram-control from complex anti -a-methyl-b-alkoxy aldehyde corresponding to the C19-C32 fragment of swinholide A and BF3 ·Et2 O)
20
Evans DA.
Black WC.
J. Am. Chem. Soc.
1993,
115:
4497
21a This aldehyde has been efficiently synthesized in 82% overall yield in a racemic form using Hoppe’s homoaldolization methodology in the presence of TMEDA: Hoppe D.
Hanko R.
Brönneke A.
Lichtenberger F.
Van Hülsen E.
Chem. Ber.
1985,
118:
2822
21b This is followed after hydroxyl protection, by ozonolysis of the resulting crude (Z )-vinylcarbamate (see experimental). It is noteworthy that enantioselective access to the corresponding homochiral aldehyde can be readily achieved by replacing TMEDA with (-)-Sparteine: Hoppe I.
Hoppe D.
Wolff C.
Egert E.
Herbst R.
Angew. Chem., Int. Ed. Engl.
1989,
28:
67
21c
Hoppe D.
Zschage O.
Angew. Chem., Int. Ed. Engl.
1989,
28:
69
21d
Zschage O.
Hoppe D.
Tetrahedron
1992,
48:
5657
22
Ibuka T.
Ito Y.
Mori Y.
Aoyama T.
Inubushi Y.
Synth. Commun.
1977,
7:
131
23
Evans DA.
Dart MJ.
Duffy JL.
Yang MG.
J. Am. Chem. Soc.
1996,
118:
4322
24a For reviews, see: Reetz MT.
Angew. Chem., Int. Ed. Engl.
1989,
28:
67
24b
Reetz MT.
Acc. Chem. Res.
1993,
26:
462
24c See also Ref.
[17 ]
24d For 1 H NMR evidence of bidentate complexation of multi-complexing Lewis acids: Keck GE.
Castellino S.
J. Am. Chem. Soc.
1986,
51:
5478
24e
Keck GE.
Boden EP.
Wiley MR.
J. Org. Chem.
1989,
54:
896
25
Rychnovsky SD.
Hoye RC.
J. Am. Chem. Soc.
1994,
116:
1753
26 See Ref.
[20 ]
This condensation reaction, performed in the presence of TiCl2 (OPr-i )2 led to an excellent Felkin syn -selectivity (>95:5).
27a
Uchino K.
Yamagiwa Y.
Kamikawa T.
Tetrahedron Lett.
1985,
26:
1319
27b
Peterson JR.
Winter TJ.
Miller CP.
Synth. Commun.
1988,
18:
949
27c For leading references in acetylacetone dianion chemistry and related chemistry, see: Huckin SN.
Weiler L.
Tetrahedron Lett.
1971,
4835
27d
Huckin SN.
Weiler L.
Can. J. Chem.
1974,
52:
2157
28
Evans DA.
Ratz AM.
Huff BE.
Sheppard GS.
J. Am. Chem. Soc.
1995,
117:
3448
29 For recent synthetic efforts on eight-membered heterocyles, see: Crimmins MT.
Choy AL.
J. Am. Chem. Soc.
1999,
121:
5653 ; and references cited therein
30
Uekim K.
Amemiya H.
Horino H.
Oyamada H.
J. Chem. Soc., Chem. Commun.
1988,
414
31
Taylor EC.
Chiang C.-S.
Synthesis
1977,
467
32
LeCocq C.
Lallemand J.-Y.
J. Chem. Soc., Chem Commun.
1981,
150
33
Baker R.
Head JC.
Swain CJ.
J. Chem. Soc., Perkin Trans. 1
1988,
85