RSS-Feed abonnieren
DOI: 10.1055/s-2001-18717
2-Acetonyl-2,4-di(hydroxy)tetrahydropyrans versus γ-Pyrones: A Chemodivergent Issue for the Condensation of Acetylacetone Dianion Equivalents with α,β-Disubstituted β-Hydroxyaldehydes Leading to Potential New Synthons for Spiroketals
Publikationsverlauf
Publikationsdatum:
05. August 2004 (online)
Abstract
In order to develop a new route to ketal or spiroketal subunits present in numerous natural products, condensation of acetylacetone bis(silyl)enol ether 2-Si or acetylacetone lithium dianion 2-Li with various anti α,β-disubstituted β-hydroxy aldehydes 11 was studied. It has been shown that under Lewis acid-promoted Mukaiyama conditions it is possible to realize such condensation reactions without formation of the well-known Danishefsky γ-pyrones 8. The required 2-acetonyl-2,4-dihydroxytetrahydropyrans 1 for further synthetic purposes were prepared in good to high yields from the intermediate acyclic aldol adduct 7. Particularly crucial are i) the deprotection conditions of the O-silyl protected acyclic intermediate 7 with tetrabutylammonium fluoride in dimethylformamide, and ii) the subsequent montmorillonite K10-promoted protection of the hemiketal 1 hydroxy group. The parameters governing the stereoselectivity of the initial condensation reaction have been studied. Under apparent Felkin or anti-Felkin/Cram-chelate conditions, syn,anti-adducts are obtained with high selectivity from acetylacetone bis(silyl) enol ether 2-Si. Partial modulation of the stereoselectivity can be achieved through condensation of the acetylacetone lithium dianion 2-Li with aldehydes bearing bulky O-silyl protecting groups which allows a preferential access to the anti,anti triads.
Key words
silyl enols ethers - dianions - aldol reactions - cyclizations - chemoselectivity - diastereoselectivity - spiro compounds
-
3a
Boivin B. Tetrahedron 1987, 43: 3309 -
3b
Perron F.Albizati KF. Chem. Rev. 1989, 89: 1617 -
3c
Vaillancourt V.Pratt NE.Perron F.Albizati KM. In The Total Synthesis of Natural Products Vol. 8:Apsimon JW. John Wiley & sons; New York: 1992. p.533 -
4a
Férézou J.-P.Julia M.Liu LW.Li Y.Pancrazi A. Synlett 1991, 614 -
4b
Férézou J.-P.Julia M.Li Y.Liu LW.Pancrazi A.Porteu F. Bull. Soc. Chim. Fr. 1994, 131: 865 -
4c
Férézou J.-P.Julia M.Li Y.Liu LW.Pancrazi A. Bull. Soc. Chim. Fr. 1995, 132: 428 -
5a For leading reviews on avermectins, see:
Blizzard TA. Org. Prep. Proced. Int. 1994, 26: 617 -
5b
Davies HG.Green RH. Chem. Soc. Rev. 1991, 20: 211 -
5c
Davies HG.Green RH. Chem. Soc. Rev. 1991, 20: 271 -
5d
Blizzard T.Fisher MH.Mrozik H.Shih TL. In Recent Progress in the Chemical Synthesis of Antibiotics Springer-Verlag; Berlin: 1990. p.65 -
5e
Crimmins MT.Hollis WG.O’Mahony R. In Studies in Natural Products Chemistry, Stereoselective Synthesis Part A Vol. 1: Elsevier; Amsterdam: 1988. p.435 -
5f
Davies HG.Green RH. Nat. Prod. Rep. 1986, 3: 87 -
6a
Werner G.Hagenmaier H.Albert K.Kohlshorn H.Drautz H. Tetrahedron Lett. 1983, 24: 5193 -
6b
Werner G.Hagenmaier H.Drautz H.Baumgartner A.Zähner H. J. Antibiot. 1984, 37: 110 -
6c For total syntheses:
Evans DA.Calter MA. Tetrahedron Lett. 1993, 34: 6871 -
6d
Toshima K.Jyojima T.Yamaguchi H.Murase H.Yoshida T.Matsumura S.Nakata M. Tetrahedron Lett. 1996, 37: 1069 -
6e
Toshima K.Yamaguchi H.Jyojima T.Noguchi Y.Nakata M.Matsumura S. Tetrahedron Lett. 1996, 37: 1073 -
6f
Toshima K.Jyojima T.Noguchi Y.Yoshida T.Murase M.Nakata M.Matsumura S. J. Org. Chem. 1997, 62: 3271 -
6g
Scheidt KA.Tasaka A.Bannister TD.Wendt MD.Roush WR. Angew. Chem. Int. Ed. 1999, 38: 1652 -
7a
Mukaiyama T.Banno K.Narasaka KJ. J. Am. Chem. Soc. 1974, 96: 7503 -
7b For a review:
Gennari C. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I.Heathcock CH. Pergamon; New York: 1991. p.629 -
8a
Danishefsky SJ.Kitahara H. J. Am. Chem. Soc. 1974, 96: 7807 -
8b
Danishefsky SJ.Kobayashi S.Kervin JF. J. Org. Chem. 1982, 47: 1983 -
8c
Danishefsky SJ.Larson E.Askin D.Kato N. J. Am. Chem. Soc. 1985, 107: 1246 -
8d
Danishefsky SJ.Maring CJ. J. Am. Chem. Soc. 1985, 107: 1269 -
9a Reviews:
Danishefsky SJ. Aldrichimica Acta 1986, 19: 59 -
9b
Danishefsky SJ.De Ninno MP. Angew. Chem., Int. Ed. Engl. 1987, 26: 15 -
9c
Danishefsky SJ. Chemtracts 1989, 273 -
10a
Chan TH.Brownbridge P. Tetrahedron 1981, 37 Supplement No. 3: 387 -
10b
Chan TH.Brook MA. Tetrahedron Lett. 1985, 25: 2943 -
11a
Danishefsky SJ.Harvey DF.Quallich G.Uang BJ. J. Org. Chem. 1984, 49: 393 -
11b
Danishefsky SJ.Pearson WH.Harvey DF.Maring CJ.Springer JP. J. Am. Chem. Soc. 1985, 107: 1256 -
11c
Peterson JR.Kirchhoff EW. Synlett 1990, 394 -
12a Mono-activated diols are more prone to [4+2] cycloadditions:
Mujica MT.Afonso MM.Galindo A.Palenzuela JA. Tetrahedron 1996, 52: 2167 -
12b For an example of a true formal asymmetric cycloaddition reaction with 1-methoxy-3-[(trimethylsilyl)oxy]buta-1,2-diene:
Schaus SE.Branalt J.Jacobsen EN. J. Org. Chem. 1998, 63: 403 - 14
Deslongchamps P. Stereoelectronic Effects in Organic Synthesis Pergamon; New York: 1983. -
15a Reviews:
Hoffmann RW. Angew. Chem., Int. Ed. Engl. 1987, 26: 489 -
15b More focussed on such a triad:
Hoffmann RW.Dahmann G.Andersen MW. Synthesis 1994, 629 -
15c For a recent solution to this problem:
Chemler SR.Roush WR. J. Org. Chem. 1998, 63: 3800 ; and references cited therein -
16a
See Ref. [11b]
-
16b
For a related study with substituted mono-activated diene, see Ref. [12]
- 17
Reetz MT.Kesseler K. J. Chem. Soc., Chem. Commun. 1984, 1079 -
18a
Heathcock CH.Flippin LA. J. Am. Chem. Soc. 1983, 105: 1667 -
18b
Reetz MT. Tetrahedron Lett. 1984, 25: 729 -
18c
Evans DA.Gage JR. Tetrahedron Lett. 1990, 31: 6129 -
18d
Evans DA.Duffy JL.Dart MJ. Tetrahedron Lett. 1994, 35: 8537 -
18e
Evans DA.Dart MJ.Duffy JL. Tetrahedron Lett. 1994, 35: 8541 -
18f
Gustin DJ.VanNieuwenhze MS.Roush WR. Tetrahedron Lett. 1995, 36: 3443 -
18g
Evans DA.Dart MJ.Duffy JL.Yang MG.Livingston AB. J. Am. Chem. Soc. 1995, 117: 6619 -
18h
Bernardi A.Scolastico C. Chemtracts 1995, 8: 246 ; (research by D. A. Evans) -
19a
Evans DA.Gage JR.Leighton JL. J. Am. Chem. Soc. 1992, 114: 9434 (85:15 syn-Cram-control from syn-a-methyl-b-alkoxy aldehyde corresponding to the C21-C25 fragment of calyculin A) -
19b
Tanimoto N.Gerritz SV.Sawabe A.Noda T.Filla SA.Masamune S. Angew. Chem., Int. Ed. Engl. 1994, 33: 673 (10:1 anti-Cram-chelate control from aldehyde 9 in the presence of TiCl4) -
19c
Paterson I.Cumming JG.Smith JD.Ward RA. Tetrahedron Lett. 1994, 35: 441 -
19d
Paterson I.Cumming JG.Smith JD.Ward RA.Yeung K.-S. Tetrahedron Lett. 1994, 35: 3405 (>97:1 syn-Cram-control from complex anti-a-methyl-b-alkoxy aldehyde corresponding to the C19-C32 fragment of swinholide A and BF3·Et2O) - 20
Evans DA.Black WC. J. Am. Chem. Soc. 1993, 115: 4497 -
21a This aldehyde has been efficiently synthesized in 82% overall yield in a racemic form using Hoppe’s homoaldolization methodology in the presence of TMEDA:
Hoppe D.Hanko R.Brönneke A.Lichtenberger F.Van Hülsen E. Chem. Ber. 1985, 118: 2822 -
21b This is followed after hydroxyl protection, by ozonolysis of the resulting crude (Z)-vinylcarbamate (see experimental). It is noteworthy that enantioselective access to the corresponding homochiral aldehyde can be readily achieved by replacing TMEDA with (-)-Sparteine:
Hoppe I.Hoppe D.Wolff C.Egert E.Herbst R. Angew. Chem., Int. Ed. Engl. 1989, 28: 67 -
21c
Hoppe D.Zschage O. Angew. Chem., Int. Ed. Engl. 1989, 28: 69 -
21d
Zschage O.Hoppe D. Tetrahedron 1992, 48: 5657 - 22
Ibuka T.Ito Y.Mori Y.Aoyama T.Inubushi Y. Synth. Commun. 1977, 7: 131 - 23
Evans DA.Dart MJ.Duffy JL.Yang MG. J. Am. Chem. Soc. 1996, 118: 4322 -
24a For reviews, see:
Reetz MT. Angew. Chem., Int. Ed. Engl. 1989, 28: 67 -
24b
Reetz MT. Acc. Chem. Res. 1993, 26: 462 -
24c
See also Ref. [17]
-
24d For 1H NMR evidence of bidentate complexation of multi-complexing Lewis acids:
Keck GE.Castellino S. J. Am. Chem. Soc. 1986, 51: 5478 -
24e
Keck GE.Boden EP.Wiley MR. J. Org. Chem. 1989, 54: 896 - 25
Rychnovsky SD.Hoye RC. J. Am. Chem. Soc. 1994, 116: 1753 -
27a
Uchino K.Yamagiwa Y.Kamikawa T. Tetrahedron Lett. 1985, 26: 1319 -
27b
Peterson JR.Winter TJ.Miller CP. Synth. Commun. 1988, 18: 949 -
27c For leading references in acetylacetone dianion chemistry and related chemistry, see:
Huckin SN.Weiler L. Tetrahedron Lett. 1971, 4835 -
27d
Huckin SN.Weiler L. Can. J. Chem. 1974, 52: 2157 - 28
Evans DA.Ratz AM.Huff BE.Sheppard GS. J. Am. Chem. Soc. 1995, 117: 3448 - 29 For recent synthetic efforts on eight-membered heterocyles, see:
Crimmins MT.Choy AL. J. Am. Chem. Soc. 1999, 121: 5653 ; and references cited therein - 30
Uekim K.Amemiya H.Horino H.Oyamada H. J. Chem. Soc., Chem. Commun. 1988, 414 - 31
Taylor EC.Chiang C.-S. Synthesis 1977, 467 - 32
LeCocq C.Lallemand J.-Y. J. Chem. Soc., Chem Commun. 1981, 150 - 33
Baker R.Head JC.Swain CJ. J. Chem. Soc., Perkin Trans. 1 1988, 85
References
Current address: Vivien Henryon, Rhône-Poulenc industrialisation, 24 Avenue Jean Jaurès, 69153 Décines-Charpieu, France. E-mail: Vivien.Henryon@CRIT.Rhone-Poulenc.com.
2Current address: Jean-Pierre Férézou, Far-Manguinhos, Instituto Oswaldo Cruz, Rua Sizenando Nabuco, 100 Manguinhos, CEP 21041-250 Rio de Janeiro/RJ, Brazil, E-Mail: ferezou@gbl.com.br.
13See Ref. [7] .
26See Ref. [20] This condensation reaction, performed in the presence of TiCl2(OPr-i)2 led to an excellent Felkin syn-selectivity (>95:5).