Semin Hear 2001; 22(4): 325-338
DOI: 10.1055/s-2001-19108
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Properties and Quantification of Linear and Nonlinear Systems

Mark E. Chertoff, Emily Miller, Lin Bian
  • Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas
Further Information

Publication History

Publication Date:
18 December 2001 (online)

ABSTRACT

Linear and nonlinear mechanisms are prevalent within the auditory system. Our understanding of these mechanisms requires a knowledge of the properties of both linear and nonlinear systems. In this review, we discuss the properties of these systems and techniques used to quantify them. Linear systems are defined in terms of the properties of homogeneity and superposition. Examples are provided in terms of physical systems such as hearing aids and filters as well as physiologic systems present in the auditory periphery. Nonlinear systems are discussed in terms of their lack of superposition. This is illustrated with a saturating nonlinear system and the generation of distortion products. Finally, five different approaches to characterizing nonlinear systems are discussed. Examples from three techniques are provided for characterizing the nonlinearity associated with the mechanical-to-electrical transduction process in the cochlea.

REFERENCES

  • 1 Rhode W S. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique.  J Acoust Soc Am . 1971;  49 1218-1231
  • 2 Hudspeth A J. Extracellular current flow and the site of transduction by vertebrate hair cells.  J Neurosci . 1982;  2 1-10
  • 3 Bendat J S. Nonlinear System Analysis and Identification from Random Data.  New York: Wiley; 1990
  • 4 Schetzen M. The Volterra and Wiener Theories of Nonlinear Systems.  Malabar, FL: Krieger; 1989
  • 5 Wickesberg R E, Dickson J W, Gibson M M, Geisler C D. Wiener kernel analysis of responses from anteroventral cochlear nucleus neurons.  Hear Res . 1984;  14 155-174
  • 6 Recio A, Narayan S S, Ruggero M A. Wiener-kernel analysis of basilar-membrane responses to white noise. In: Lewis ER, Long GR, Leake PA, Narins PM, Steele CR, eds. Diversity in Auditory Mechanics Singapore: World Scientific 1986: 1-6
  • 7 Shi Y, Hecox K E. Nonlinear system identification by m-pulse sequences: application to brainstem auditory evoked responses.  IEEE Trans Biomed Eng . 1991;  38 834-845
  • 8 Bian L, Chertoff M E. Distinguishing cochlear pathophysiology in 4-aminopyridine and furosemide treated ears using a nonlinear systems identification technique.  J Acoust Soc Am . 2001;  109 671-685
  • 9 Bian L, Chertoff M E. Differentiation of cochlear pathophysiology in ears damaged by salicylate or a pure tone using a nonlinear systems identification technique.  J Acoust Soc Am . 1998;  104 2261-2271
  • 10 Chertoff M E, Steele T C, Bian L. Characterizing cochlear mechano-electric transduction in ears damaged with pure tones.  J Acoust Soc Am . 1997;  102 441-450
  • 11 Chertoff M E, Ator G A, Steele T C, Bian L. Characterizing cochlear mechano-electric transduction using a nonlinear systems identification procedure.  J Acoust Soc Am . 1996;  100 3741-3753
  • 12 Patuzzi R B, Moleirinho A. Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea.  Hear Res . 1998;  125 1-16
  • 13 Nieder P, Nieder I. Determination of microphonic generator transfer characteristic from modulation data.  J Acoust Soc Am . 1971;  49 478-492
  • 14 Engebretson A M, Eldredge D H. Model for the nonlinear characteristics cochlear potentials.  J Acoust Soc Am . 1968;  44 548-554
  • 15 Weiss T F, Leong R. A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage.  Hear Res . 1985;  20 175-195