Horm Metab Res 2001; 33(12): 708-712
DOI: 10.1055/s-2001-19132
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Elevated AT1 Receptor Protein but Lower Angiotensin II-Binding in Adipose Tissue of Rats with Monosodium Glutamate-Induced Obesity

L'. Pintérová 1 , B. Železná 2 , M. Ficková 1 , L. Macho 1 , O. Križanová 3 , D. Ježová 1 , Š. Zórad 1
  • 1 Institute of Experimental Endocrinology, SAS, Bratislava, Slovak Republic
  • 2 Institute of Molecular Genetics, ASCR, Prague, Czech Republic
  • 3 Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
Further Information

Publication History

Publication Date:
18 December 2001 (online)

Age-related hypertrophy of adipose tissue has been associated with a significant decrease in the number of angiotensin II receptors. The aim of this study was to investigate the characteristics of angiotensin II receptors in hypertrophic adipose tissue in animal obesity model using rats postnatally treated with monosodium glutamate. Angiotensin II is known to induce hypertrophy in several tissues of the cardiovascular system and might do the same in fat tissue. The expression and binding properties of angiotensin II AT1 receptors in epididymal fat tissue of adult rats were studied using membrane-binding, RT-PCR, and immunoblotting. The amount of AT1 receptor mRNA did not differ significantly between obese and control rats. Despite that glutamate-treated rats displayed approximately 4-times more AT1 receptor immunoreactive protein content in fat tissue cell membranes than the controls did. In contrast, binding experiments showed a significant (40.3 ± 6.2 %) decrease of 125I-Sar1-Ile8-angiotensin II-binding to fat tissue cell membranes in obese rats compared to controls. In conclusion, the present study provides evidence for the low binding properties associated with an accumulation of AT1 receptor protein in cell membranes of the fat tissue of rats with glutamate-induced obesity. Discrepancies among angiotensin II-binding, AT1 receptor protein, and AT1 receptor mRNA levels indicate a possible defect in the receptor protein, which remains to be identified. The results obtained support a role of angiotensin II and AT1 receptors in the pathogenesis of obesity.

References

  • 1 Olney J W. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate.  Science. 1969;  164 719-721
  • 2 Redding T W, Schally A V, Arimura A, Wakabayashi I. Effect of monosodium glutamate on some endocrine functions.  Neuroendocrinology. 1971;  8 245-255
  • 3 Nemeroff C B, Konkol R J, Bissette G, Youngblood W, Martin J B, Brazeau P, Rone M S, Prange A J Jr, Breese G R, Kizer J S. Analysis of the disruption in hypothalamic-pituitary regulation in rats treated neonatally with monosodium L-glutamate (MSG): Evidence for the involvement of tuberoinfundibular cholinergic and dopaminergic systems in neuroendocrine regulation.  Endocrinology. 1977;  101 613-622
  • 4 Skultetyova I, Kiss A, Jezova D. Neurotoxic lesions induced by monosodium glutamate result in increased adenopituitary proopiomelanocortin gene expression and decreased corticosterone clearance in rats.  Neuroendocrinology. 1998;  67 412-420
  • 5 Zorad S, Macho L, Jezova D, Fickova M. Partial characterization of insulin resistance in adipose tissue of monosodium glutamate-induced obese rats.  Ann N Y Acad Sci. 1997;  827 541-545
  • 6 Dolnikoff M S, Kater C E, Egami M, de Andrade I S, Marmo M R. Neonatal treatment with monosodium glutamate increases plasma corticosterone in the rat.  Neuroendocrinology. 1988;  48 645-649
  • 7 Kubota A, Nakagawa Y, Igarashi Y. Studies of gene expression in liver of insulin-like growth factor (IGF)-I, IGF binding protein-3 and growth hormone (GH) receptor/GH binding protein in rats treated with monosodium glutamate.  Horm Metab Res. 1994;  26 497-503
  • 8 Macho L, Jezova D, Zorad S, Fickova M. Postnatal monosodium glutamate treatment results in attenuation of corticosterone metabolic rate in adult rats.  Endocrine Regulations. 1999;  33 61-67
  • 9 Macho L, Fickova M, Jezova D, Zorad S. Late effects of postnatal administration of monosodium glutamate on insulin action in adult rats.  Physiol Res. 2000;  49 (Suppl. 1) S79-S85
  • 10 Hollenberg C H. Perspectives in adipose tissue physiology.  Int J Obes. 1990;  14 (Suppl. 3) 135-152
  • 11 Kissebah A H, Krakower G R. Regional adiposity and morbidity.  Physiol Rev. 1994;  74 761-811
  • 12 Crandall D L, Herzlinger H E, Saunders B D, Kral J G. Developmental aspects of adipose tissue renin-angiotensin system: therapeutic implications.  Drug Development Res. 1994;  32 117-125
  • 13 Darimont C, Vassaux G, Ailhaud G, Negrel R. Differentiation of preadipose cells paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin II.  Endocrinology. 1994;  135 2030-2036
  • 14 Wabitsch M, Heinze E, Debatin K-M, Blum W F. IGF-I and IGFBP-3 expression in cultured human preadipocytes and adipocytes.  Horm Metab Res. 2000;  32 555-559
  • 15 Engeli S, Gorzelniak K, Kreutz R, Runkel N, Distler A, Sharma A M. Co-expression of renin-angiotensin system genes in human adipose tissue.  J Hypertens. 1999;  17 555-560
  • 16 Engeli S, Sharma A M. Role of adipose tissue for cardiovascular-renal regulation in health and disease.  Horm Metab Res. 2000;  32 485-499
  • 17 Pinterova L, Krizanova O, Zorad S. Rat epididymal fat tissue express all components of the renin-angiotensin system.  Gen Physiol Biophys. 2000;  19 329-334
  • 18 Adams F, Klaus S, Boschmann M. Metabolic and hemodynamic response to angiotensin II in rat adipose tissue.  Int J Obes Relat Metab Disord. 2000;  24 S74
  • 19 Frederich R C, Kahn B B, Peach M J, Flier J S. Tissue-specific nutritional regulation of angiotensinogen in adipose tissue.  Hypertension. 1992;  19 339-344
  • 20 Zorad S, Fickova M, Zelezna B, Macho L, Kral J G. The role of angiotensin II and its receptors in regulation of adipose tissue metabolism and cellularity.  Gen Physiol Biophys. 1995;  14 383-391
  • 21 Crandall D L, Herzlinger H E, Saunders B D, Zolotor R C, Feliciano L, Cervoni P. Identification and characterization of angiotensin II receptors in rat epididymal adipocyte membranes.  Metabolism. 1993;  42 511-515
  • 22 Mallow H, Trindl A, Löffler G. Production of angiotensin II receptors type one (AT1) and type two (AT2) during the differentiation of 3T3-L1 preadipocytes.  Horm Metab Res. 2000;  32 500-503
  • 23 Tokarev D, Kristova V, Kriska M, Jezova D. Treatment of neonatal rats with monosodium glutamate attenuates the cardiovascular reactivity to phenylephrine and angiotensin II.  Physiol Res. 1997;  46 165-171
  • 24 Munson P J, Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems.  Anal Biochem. 1980;  107 220-239
  • 25 Zelezna B, Richards E M, Tang W, Lu D, Sumners C, Raizada M K. Characterization of a polyclonal anti-peptide antibody to the angiotensin II type-1 (AT1) receptor.  Biochem Biophys Res Commun. 1992;  183 781-788
  • 26 Chomczynski P, Sacchi N. Single step mehod of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.  Anal Biochem. 1987;  162 156-159
  • 27 Langlois D, Ouali R, Berthelon M C, Derrien A, Saez J M. Regulation by growth factors of angiotensin II type-1 receptor and the α-subunit of Gq and G11 in bovine adrenal cells.  Endocrinology. 1994;  135 480-483
  • 28 Shelat S G, Flanagan-Cato L M, Fluharty S J. Glucocorticoid and mineralocorticoid regulation of angiotensin II type 1 receptor binding and inositol triphosphate formation in WB cells.  J Endocrinol. 1999;  162 381-391
  • 29 Leri A, Liu Y, Wang X, Kajstura J, Malhotra A, Meggs L G, Anversa P. Overexpression of insulin-like growth factor-1 attenuates the myocyte renin-angiotensin system in transgenic mice.  Circ Res. 1999;  84 752-762
  • 30 Dell G C, Morley S D, Mullins J J, Williams B C, Walker S W. Multiple signal transduction system regulate angiotensin II type 1 (AT1) receptor mRNA expression in bovine adrenocortical cells.  Endocr Res. 1996;  22 363-368
  • 31 Wajchenberg B L. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome.  Endocr Rev. 2000;  21 697-738

Štefan Zórad

Institute of Experimental Endocrinology
Slovak Academy of Sciences

Vlarska 3
833 06 Bratislava
Slovak Republic


Phone: + 421 (2) 54 77-28 00

Fax: + 421 (2) 54 77-42 47

Email: ueenstef@savba.sk