References
1
Wermuth CG.
The Practice of Medicinal Chemistry
Academic Press;
San Diego:
1996.
For reviews see:
2a
Hermkens PHH.
Ottenheijm HCJ.
Rees DC.
Tetrahedron
1997,
53:
5643
2b
Thompson LA.
Ellman JA.
Chem. Rev.
1996,
96:
555
2c
Fruchtel JS.
Jung G.
Angew. Chem., Int. Ed. Engl.
1996,
35:
17
3
Gierasch TM.
Chytil M.
Didiuk MT.
Park JY.
Urban JJ.
Nola SP.
Verdine GL.
Org. Lett.
2000,
2:
3999
4
Witczak ZJ.
Curr. Med. Chem.
1995,
1:
392
5
Lockhoff O.
Angew. Chem. Int. Ed.
1998,
37:
3436
6
Dondoni A.
Massi A.
Sabbatini S.
Tetrahedron Lett.
2001,
42:
4495
7a
Biginelli P.
Gazz. Chim. Ital.
1893,
23:
360
For a recent review see: (b) Kappe CO.
Acc. Chem. Res.
2000,
33:
879
8a
Atwal KS.
Swanson BN.
Unger SE.
Floyd DM.
Moreland S.
Hedberg A.
O" Reilly BC.
J. Med. Chem.
1991,
34:
806 ; and references therein
8b
Atwal KS.
Rovnyak GC.
Kimball SD.
Floyd DM.
Moreland S.
Swanson BN.
Gougoutas JZ.
Schwartz J.
Smillie KM.
Malley MF.
J. Med. Chem.
1990,
33:
2629
9
Hantzsch A.
Ann. Chem.
1882,
215:
1
For reviews see:
10a
Sausins A.
Duburs G.
Khim. Geterotsikl. Soedin.
1993,
579
10b
Sausins A.
Duburs G.
Heterocycles
1988,
27:
291
10c
Stout DM.
Meyers AI.
Chem. Rev.
1982,
82:
223
10d
Kutney JP.
Heterocycles
1977,
7:
593
10e
Eisner U.
Kuthan J.
Chem. Rev.
1972,
72:
1
11a
Goldmann S.
Stoltefuss J.
Angew. Chem., Int. Ed. Engl.
1991,
30:
1559
11b
Triggle DJ.
Langs DA.
Janis RA.
Med. Res. Rev.
1989,
9:
123
11c
Bossert F.
Meyer H.
Wehinger E.
Angew. Chem., Int. Ed. Engl.
1981,
20:
762
12 Bossert F., Vater W.; US Pat. 3 485 847, 1969
13 For a recent discussion on this issue and an approach to the enantioselective synthesis of DHP’s see: Straub A.
Goehrt A.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2662
14 Sugar aldehydes have been used in the Hantzsch reaction for the synthesis of chiral 4-alkyl DHP’s. However, these DHP derivatives showed different biological properties of the corresponding 4-aryl congeners. See: Martin N.
Martinez-Grau A.
Seoane C.
Marco JL.
Albert A.
Cano FH.
Tetrahedron: Asymmetry
1995,
6:
877
15a
Dondoni A.
Pure Appl. Chem.
2000,
72:
1577
15b
Dondoni A.
Scherrmann M.-C.
J. Org. Chem.
1994,
59:
6404
16 Enamine 3a was obtained as single geometric isomer while 3b appeared to be ˜1:1 mixture of E and Z isomers. Specific rotation values are reported. Ribo series: 3a: [α]2
0
D +19 (c 1.1, CHCl3). 6a: [α]2
0
D +39 (c 0.9, CHCl3). 7a: [α]2
0
D +4 (c 1.0, MeOH). 9a(major): [α]2
0
D +103 (c 1.5, CHCl3).
9a (minor): [α]2
0
D +136 (c 0.8, CHCl3). 10a (major): [α]2
0
D = +11 (c 1.7, MeOH). 10a(minor): [α]2
0
D = +84 (c 1.0, MeOH). Galacto series: 6b: [α]2
0
D +72 (c 1.4, CHCl3). 7b: [α]2
0
D -26 (c 0.8, MeOH). 9b(major): [α]2
0
D +33 (c 1.1, CHCl3).
17 Enone 11 was prepared by standard Knoevenagel condensation of benzaldehyde and ethyl acetoacetate: Knoevenagel E.
Ber.
1896,
29:
172
18 Aminomethylated polystyrene (AM-resin) was purchased from Novabiochem.
19 General experimental procedure for the two-component Hantzsch reaction leading to 6-C-glycosyl 4-phenyl DHP’s: A mixture of enamine 3a (258 mg, 0.5 mmol), enone 11 (545 mg, 2.5 mmol), activated 4-Å molecular sieves (200 mg), and anhyd DMF (2 mL) was stirred at 150 °C for 48 h, then cooled to r.t., filtered through a pad of Celite, and concentrated. The residue was diluted with CH2Cl2 (5 mL) and treated with aminomethylated polystyrene
[18]
(1.0 g, 2.5 mmol of ˜2.5 mmol/g resin). The suspension was stirred for an additional 2 h then the resin was filtered off and washed thoroughly with CH2Cl2. The combined filtrates were concentrated and eluted from a column of silica gel with cyclohexane-EtOAc, 9:1 to give first major-9a (154 mmol, 43%). Eluted second was minor-9a (102 mg, 28%). A vigorously stirred mixture of major-9a (154 mg, 0.21 mmol), 20% Pd(OH)2 on activated carbon (80 mg), AcOEt (2 mL) and EtOH (2 mL) was degassed under vacuum and saturated with H2 (by a H2-filled balloon) three times. The suspension was stirred at room temperature for 2 h under a slightly pressure of H2(balloon), then filtered through a pad of Celite and concentrated to afford major-10a (91 mg, 95%) as a white amorphous solid. 1H NMR (CD3OD): δ = 9.15 (s, 1 H, NH), 7.35-7.05 (m, 5 H, Ph), 5.51 (d, 1 H, J
1",2" = 0.5 Hz, H-1"), 4.95 (s, 1 H, H-4), 4.20-3.90 (m, 8 H, 2 OCH
2CH3, H-2", H-3", H-4", H-5"a), 3.84 (d, 1 H, J
5"a,5"b = 12.0 Hz, H-5"b), 2.30 (s, 3 H, CH3), 1.24 (t, 3 H, J = 7.0 Hz, OCH2CH
3), 1.23 (t, 3 H, J = 7.0 Hz, OCH2CH
3). 13C NMR (CD3OD) selected data: δ = 168.4, 167. 6, 148.5, 148.0, 145.6, 103.6, 101.5, 82.0, 78.4, 65.4, 59.9, 59.1, 39.7, 17.2, 13.4. MALDI-TOF MS: 448.2 (M++H), 470.5 (M++Na). Anal. Calcd for C23H29NO8: C, 61.73; H, 6.53; N, 3.13. Found: C, 61.78; H, 6.55; N, 3.18.
20 The 1,2-elimination of BnOH occurred in the galactosyl moiety of 9b to give the corresponding 1,2-dihydro-derivative as a main product in 60% yield.