Zusammenfassung
Ziel: Verbesserung der Unterscheidung zwischen Tumorrezidiv und Gewebenekrose in der Verlaufskontrolle operierter Hirntumoren unter Radiatio durch Einsatz schneller 1 H-MR-spektroskopischer Bildgebung (TSI) in Kombination mit Einzelvolumen-Spektroskopie (SVS). Methoden: An 54 Patienten mit malignem primären Hirntumor (44 Glioblastome, 10 andere hochgradige Gliome) wurden postoperativ insgesamt 140 1 H-MRS-Untersuchungen im Verlauf einer Strahlentherapie durchgeführt. Mit der TSI-Sequenz wurden Einzel- oder Doppelschichten mit 32 · 32-Bildmatrix in 11 bzw. 15 min akquiriert. Aus der SVS mit TR/TE 2000/272 ms wurden relative und bei 15 Patienten auch die Zeitverläufe der absoluten Metabolitenkonzentrationen ermittelt. Ergebnisse: Von den 44 Patienten, bei denen über den Gesamtverlauf der Radiatio MRS-Resultate erhalten werden konnten, zeigten 23 nach Bestrahlung eine mit TSI lokalisierte persistierende oder neu auftretende Cholin-Akkumulation als Indikator für Rest- bzw. Rezidivtumor. In allen diesen Fällen wurde die MRS-Diagnose kurzfristig durch Histologie oder weiteren Verlauf bestätigt. Allerdings entwickelten 6 von 15 Patienten mit im TSI unauffälliger Cholinverteilung innerhalb von drei Monaten ebenfalls ein Rezidiv. Vorteile der SVS bestanden in früher Rezidiverkennung anhand der zeitlichen Entwicklung der Metabolitenkonzentrationen. Schlussfolgerungen: Schnelle spektroskopische Bildgebung und Einzelvolumen-1 H-MRS stellen sich ergänzende Modalitäten in der Therapieverlaufskontrolle bei operierten Hirntumoren dar und können bei Nachweis einer fokalen Cholin-Akkumulation ein Rezidiv zuverlässig und frühzeitig diagnostizieren.
Summary
Purpose: To improve differential diagnosis of residual or recurrent tumor vs. tissue necrosis in the course of radiation therapy of neurosurgically-treated brain tumors by application of fast 1 H-MR spectroscopic imaging in combination with single-voxel spectroscopy (SVS). Methods: 54 patients after with malignant brain tumor (44 cases of glioblastoma, 10 other high-grade gliomas) were examined post-surgically in a total of 140 proton MRS examinations in the course of radiotherapy and in follow-up controls. Fast SI acquisition was performed as single-slice or double-slice TSI sequence with 32 × 32 phase encodings within 11 or 15 minutes, respectively. SVS with TR/TE 2000/272 ms yielded relative metabolite ratios, and in 15 patients the time courses of the absolute cocentrations of brain metabolites were also determined. Results: In the group of 44 patients that could be tracked by MRS until therapy completion, TSI localized in 23 patients a persistent or newly arisen distinct choline accumulation indicating residual or reccurent tumor after radiation therapy. In all these cases MRS diagnosis was confirmed histologically or by short-term follow-up. However, in 6 of 15 patients showing a normal choline pattern in the TSI acquisition, tumor recurrence appeared within three months. SVS provided early recognition of recurrent tumor when detecting characteristic alterations of metabolite concentrations oin therapy follow-up. Conclusion: TSI and SVS represent complementary MRS techniques fand are able to diagnose tumor recurrence early and unambiguously in cases where focal choline accumulation is detected.
Schlüsselwörter
Magnetresonanz - In-vivo Spektroskopie - Spektroskopische Bildgebung - Strahlentherapie - Verlaufskontrolle - Hirntumoren
Key words
Magnetic resonance - Spectroscopy - Spectroscopic imaging - Therapeutic radiology - Therapy monitoring - Brain neoplasms
Literatur
1
Duyn J H, Moonen C T.
Fast proton spectroscopic imaging of human brain using multiple spin-echoes.
Magn Reson Med.
1993;
30
409-414
2
Duyn J H, Frank J A, Moonen C T.
Incorporation of lactate measurement in multi-spin-echo proton spectroscopic imaging.
Magn Reson Med.
1995;
33
101-107
3
Norris D G, Dreher W.
Fast proton spectroscopic imaging using the sliced k-space method.
Magn Reson Med.
1993;
30
641-645
4
Posse S, Tedeschi G, Risinger R, Ogg R, Le Bihan D.
High speed 1H spectroscopic imaging in human brain by echo planar spatial-spectral encoding.
Magn Reson Med.
1995;
33
34-40
5
Adalsteinsson E, Irarrazabal P, Topp S, Meyer C, Macovski A, Spielman D M.
Volumetric spectroscopic imaging with spiral-based k-space trajectories.
Magn Reson Med.
1998;
39
889-898
6
Flacke S, Träber F, Block W, Lamerichs R, Schüller H, Schild H H.
Improved Diagnosis of Contrast-Enhancing Brain Lesions with Multifunctional MRI Assessment: A Case Report.
JMRI.
1999;
9
741-744
7
Helms G.
Analysis of 1,5 Tesla proton MR spectra of human brain using LCModel and an imported basis set.
Magn Reson Imaging.
1999;
17
1211-1218
8
Nelson S J.
Imaging of brain tumors after therapy.
Neuroimaging Clin N Am.
1999;
9
801-819
9
Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn J H, Alger J R, Di Chiro G.
Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study.
J Neurosurg.
1997;
87
516-524
10
Wald L L, Nelson S J, Day M R, Noworolski S E, Henry R G, Huhn S L, Chang S, Prados M D, Sneed P L, Larson D A, Wara W M, McDermott M, Dillon W P, Gutin P H, Vigneron D B.
Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy.
J Neurosurg.
1997;
87
525-534
11
Graves E E, Nelson S J, Vigneron D B, Verhey L, McDermott M, Larson D, Chang S, Prados M D, Dillon W P.
Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery.
Am J Neuroradiol.
2001;
22
613-624
12 Träber F, Lamerichs R, Block W, Keller E, Schild H H. 1H-MR Turbo Spectroscopic Imaging (TSI) of the Brain: Performance in Clinical Examples and Comparison to Conventional MRSI. Vancouver; Proc. 5th Scient Meeting ISMRM 1997: 1241
13
Träber F, Lamerichs R, Block W, Keller E, Schild H H.
Messzeitverkürzung durch 1H-MR-turbo-spektroskopische Bildgebung des Gehirns.
Fortschr Röntgenstr.
1997;
166
221-229
14
Duyn J H, Gillen J, Sobering G, van Zijl P C, Moonen C T.
Multisection proton MR spectroscopic imaging of the brain.
Radiology.
1993;
188
277-282
15
Moonen C T, van Zijl P C.
Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM).
J Magn Reson.
1990;
88
28-41
16
Bottomley P A.
Spatial localization in NMR spectroscopy.
Ann NY Acad Sci.
1987;
508
333-348
17
Shen J F, Saunders J K.
Double inversion recovery improves water suppression in vivo.
Magn Reson Med.
1993;
29
540-542
18
Block W, Träber F, Kuhl C K, Fric M, Keller E, Lamerichs R, Rink H, Möller H J, Schild H H.
1H-MR spektroskopische Bildgebung bei Patienten mit klinisch gesichertem Morbus Alzheimer.
Fortschr Röntgenstr.
1995;
163
230-237
19
Gredal O, Rosenbaum S, Topp S, Karlsborg M S, Werdelin L.
Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy.
Neurology.
1997;
48
878-881
20
Christiansen P, Hendriksen O, Stubgaard M, Gideon P, Larsson H BW.
In vivo quantification of brain metabolites by 1H-MRS using water as an ianternal standard.
Magn Reson Imaging.
1993;
11
107-118
21
Esteve F, Rubin C, Grand S, Kolodie H, Le-Bas J F.
Transient metabolic changes observed with proton MR spectroscopy in normal human brain after radiation therapy.
Int J Radiat Oncol Biol Phys.
1998;
40
279-286
22
Waldrop S M, Davis P C, Padgett C A, Shapiro M B, Morris R.
Treatment of brain tumors in children is associated with abnormal MR spectroscopic ratios in brain tissue remote from the tumor site.
Am J Neuroradiol.
1998;
19
963-970
23
Meyerand M E, Pipas J M, Mamourian A, Tosteson T D, Dunn J F.
Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy.
Am J Neuroradiol.
1999;
20
117-123
24
Poptani H, Kaartinen J, Gupta R K, Niemitz M, Hiltunen Y, Kauppinen R A.
Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks.
J Cancer Res Clin Oncol.
1999;
125
343-349
25
Roser W, Hagberg G, Mader I, Dellas S, Selig J, Radue E W, Steinbrich W.
Assignment of glial brain tumors in humans by in vivo 1H-magnetic resonance spectroscopy and multidimensional metabolic classification.
MAGMA.
1997;
5
179-183
26
Tien R D, Lai P H, Smith J S, Lazeyras F.
Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors.
Am J Roentgenol.
1996;
167
201-209
27
Fulhalm M J, Bizzi A, Dietz M J, Shih H H, Raman R, Sobering G S, Frank J A, Dwyer A J, Alger J R, Di Chiro G.
Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance.
Radiology.
1992;
185
675-686
28
Lazareff J A, Bockhorst K H, Curran J, Olmstead C, Alger J R.
Pediatric low-grade gliomas: prognosis with proton magnetic resonance spectroscopic imaging.
Neurosurgery.
1998;
43
809-817
29
Preul M C, Caramanos Z, Leblanc R, Vollemeire J C, Arnold D L.
Using Pattern Analysis of In-Vivo Proton MRSI Data to Improve the Diagnosis and Surgical Management of Patients with Brain Tumors.
NMR Biomed.
1998;
11
192-200
30
Warren K E, Frank J A, Black J L, Hill R S, Duyn J H, Aikin A A, Lewis B K, Adamson P C, Balis F M.
Proton magnetic resonance spectroscopic imaging in children with recurrent brain tumors.
J Clin Oncol.
2000;
18
1020-1026
31
Herholz K, Heindel W, Luyten P R, denHollander J A, Pietrzyk U, Voges J, Kugel H, Friedmann G, Heiss W D.
In vivo imaging of glucose consumption and lactate concentration in human gliomas.
Ann Neurol.
1992;
31
319-327
32
Dowling C, Bollen A W, Noworolski S M, McDermott M W, Barbaro N M, Day M R, Henry R G, Chang S M, Dillon W P, Nelson S J, Vigneron D B.
Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens.
Am J Neuroradiol.
2001;
22
604-612
33
Henry R G, Vigneron D B, Fischbein N J, Grant P E, Day M R, Noworolski S M, Star-Lack J M, Wald L L, Dillon W P, Chang S M, Nelson S J.
Comparison of relative cerebral blood volume and proton spectroscopy in patients with treated gliomas.
Am J Neuroradiol.
2000;
21
357-366
34
Nelson S J, Huhn S, Vigneron D B, Day M R, Wald L L, Prados M, Chang S, Gutin P H, Sneed P K, Verhey L, Hawkins R A, Dillon W P.
Volume MRI and MRSI techniques for the quantitation of treatment response in brain tumors: presentation of a detailed case study.
JMRI.
1997;
7
1146-1152
35
Heiland S, Hartmann M, Sartor K.
Perfusions-MRT bei gestörter Blut-Hirn-Schranke: Fehlerquellen und Lösungsansätze.
Fortschr Röntgenstr.
2000;
172
812-816
Dr. rer. nat. Frank Träber
Radiologische Universitätsklinik
Sigmund-Freud-Straße 25
53127 Bonn
Phone: + 49-228-287-6651
Fax: + 49-228-287-5598
Email: traeber@uni-bonn.de