Rofo 2002; 174(1): 43-49
DOI: 10.1055/s-2002-19542
Neuroradiologie
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Klinische funktionelle Magnetresonanztomographie (fMRT): Physiologische Grundlagen, technische Aspekte und Anforderungen für die klinische Anwendung

Functional magnetic resonance imaging: Physiological background, technical aspects and prerequisites for clinical useC.  Stippich1 , S.  Heiland1 , V.  Tronnier2 , A.  Mohr1 , K.  Sartor1
  • 1Abteilung Neuroradiologie, Neurologische Klinik
  • 2Neurochirurgische Klinik, Ruprecht-Karls-Universität Heidelberg
Further Information

Publication History

Publication Date:
29 April 2004 (online)

Zusammenfassung

Leistungsfähige Gradientensysteme und ultraschnelle Echo-Planar-Imaging (EPI-)MR-Sequenzen ermöglichen heute die nichtinvasive Messung und Abbildung von Hirnfunktionen mit hoher räumlicher und zeitlicher Auflösung in klinisch vertretbaren Untersuchungszeiten. Die funktionelle Magnetresonanztomographie (fMRT) erschließt damit der Radiologie und Neuroradiologie ein neues diagnostisches Feld mit einem Paradigmenwechsel von der rein morphologischen Abbildung von Hirnstrukturen hin zur Messung und Visualisierung von Hirnfunktionen. Auch wenn die fMRT bereits erfolgreich bei neurochirurgischen, neurologischen, psychiatrischen, neuropädiatrischen und Schmerzpatienten eingesetzt wurde, kann die Untersuchungsmethode derzeit noch nicht als klinisch-diagnostisch etabliert angesehen werden. Voraussetzung ist die Entwicklung praktikabler Stimulationssysteme, standardisierter Untersuchungsprotokolle und medizinisch zugelassener Auswertungsprogramme. Außerdem werden die Vermittlung von Spezialkenntnissen an diagnostisch tätige Ärzte und die Schulung des medizinisch-technischen Assistenzpersonals eine Schlüsselrolle bei der Weiterentwicklung der klinischen fMRT einnehmen. Diese Arbeit gibt einen Überblick über die neurophysiologischen Grundlagen der fMRT und über die Anforderungen an Messtechnik und Datenauswertung im Hinblick auf klinische Anwendungen. Die klinische Bedeutung der fMRT wird am Beispiel der prächirurgischen Diagnostik bei Patienten mit Hirntumoren dargestellt.

Summary

The advent of powerful gradient systems and ultrafast echo-planar imaging (EPI) offers the opportunity to use magnetic resonance imaging to measure and to localize brain function with high spatio-temporal resolution in clinically feasible scanning times. Functional magnetic resonance imaging (fMRI) opens up a new diagnostic field in radiology and neuroradiology with a change from pure morphological brain imaging to the measurement and visualization of brain function. Despite its successful application in neurosurgical, neurological, psychiatric, neuropediatric and pain patients fMRI has not yet reached the status of an established clinical diagnostic procedure. To this end special stimulation systems, standardized fMRI protocols and medically approved software, all dedicated to clinical application, are necessary. The training and teaching of doctors and radiographers will also be crucial for the progress of clinical fMRI. This paper gives an overview of the neurophysiological background, the technical requirements and the data processing strategies that are relevant for the clinical application of fMRI. Presurgical fMRI in patients with brain tumors is used as an example for the clinical relevance of the method.

Literatur

  • 1 Belliveau J W, Kennedy D N , McKinstry R C, Buchbinder B R, Weisskoff R M, Cohen M S, Vevea J M, Brady T J, Rosen B R. Functional mapping of the human visual cortex by magnetic resonance imaging.  Science. 1991;  254 716-719
  • 2 Ogawa S, Menon R S, Tank D W, Kim S G, Merkle H, Ellermann J M, Urgurbil K. Functional brain mapping by blood oxygenation level dependent contrast magnetic resonance imaging.  Biophys J. 1993;  64 803-812
  • 3 Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J, Lounasmaa O V. Magnetencephalography - theory, instrumentation and applications to noninvasive studies of the working human brian.  Review of modern physics. 1993;  65 413-487
  • 4 Frahm J, Bruhn H, Merboldt K D, Hänicke W. Dynamic MRI of human brain oxygenation during rest and photic stimulation.  J Magn Reson Imaging. 1992;  2 501-505
  • 5 Bandettini P A, Wong E C, Hinks R S, Tikofsky R S, Hyde J S. Time course EPI of human brain function during task activation.  Magn Reson Med. 1992;  25 390-397
  • 6 Frahm J, Merboldt K D, Hanicke W. Functional MRI of human brain activation at high spatial resolution.  Magn Reson Med. 1993;  29 139-144
  • 7 Fox P T, Mintun M A, Raichle M E, Miezin F M, Allman J M, Van Essen D C. Mapping the human visual cortex with positron emission tomography.  Nature. 1986;  323 806-809
  • 8 Holman B L, Devous M D. Functional brain SPECT: the emergence of a powerful clinical method.  J Nucl Med. 1992;  33 1888-1904
  • 9 Fox P T, Raichle M E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects.  Proc Natl Acad Sci USA. 1986;  1140-1144
  • 10 Kuschinsky W. Regulation of cerebral blood flow. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Berlin, Heidelberg, New York; Springer 2000: 15-24
  • 11 Villringer A. Physiological changes during brain activation. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Berlin, Heidelberg, New York; Springer 2000: 3-14
  • 12 Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brian mapping.  Science. 1996;  272 551-554
  • 13 Fransson P, Kruger G, Merboldt K D, Frahm J. Temporal characteristics of oxygenation-sensitive responses to visual activation in humans.  Magn Reson Med. 1998;  39 912-919
  • 14 Menon R S, Ogawa S, Hu X, Strupp J P, Anderson P, Ugurbil K. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals.  Magn Reson Med. 1995;  33 453-459
  • 15 Heiland S, Sartor K. Magnetresonanztomographie beim Schlaganfall - Methodische Grundlagen und klinische Anwendung.  Fortschr Röntgenstr. 1999;  171 3-14
  • 16 Kikuchi K, Murase K, Miki H, Kikuchi T, Sugawara Y, Mochizuki T, Ikezoe J, Ohue S. Measurement of cerebral hemodynamics with perfusion-weighted MR imaging: comparison with pre- and post-acetazolamide 133Xe-SPECT in occlusive carotid disease.  Am J Neuroradiol. 2001;  22 248-254
  • 17 Detre J A, Leigh J S, Williams D S, Koretsky A P. Perfusion imaging.  Magn Reson Med. 1992;  23 37-45
  • 18 Ogawa S, Lee T M, Nayak A S, Glynn P. Oxygenation-sensitive contrast in magnetic resonance imaging of rodent brain at high fields.  Magn Reson Med. 1990;  14 68-78
  • 19 Bandettini P A, Wong E C, Jesmanowicz A, Hinks R S, Hyde J S. Spin-echo gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T.  NMR Biomed. 1994;  7 12-20
  • 20 Turner T, Jezzard P, Wen H, Kwong K K, Le Bihan D, Zeffiro T, Balaban R S. Functional mapping of the human visual cortex at 4 Tesla and 1.5 Tesla using deoxygenation contrast EPI.  Magn Reson Med. 1993;  29 277-279
  • 21 Lotze M, Erb M, Flor H, Hülsmann E, Godde B, Grodd W. fMRI evaluation of somatotopic representation in human primary motor cortex.  Neuroimage. 2000;  11 473-481
  • 22 Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization.  Human Brain Mapping. 2001;  13 55-73
  • 23 Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W. The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery.  Eur J Neurosci. 1998;  10 1563-1573
  • 24 Binder J R, Rao S M, Hammeke T A, Yetkin F Z, Jesmanowicz A, Bandettini P A, Wong E C, Estkowski L D, Goldstein M D, Haughton V M, et al. Functional magnetic resonance imaging of human auditory cortex.  Ann Neurol. 1994;  35 662-672
  • 25 Kurth R, Villringer K, Mackert B M, Schwiemann J, Braun J, Curio G, Villringer A, Wolf K J. FMRI assessment of somatotopy in human Brodman area 3b by electrical finger stimulation.  NeuroReport. 1998;  9 207-212
  • 26 Stippich C, Hofmann R, Kapfer D, Hempel E, Heiland S, Jansen O, Sartor K. Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional MRI.  Neurosci Lett. 1999;  277 25-28
  • 27 Weismann M, Yousry I, Heuberger E, Nolte A, Ilmberger J, Kobal G, Yousry T A, Kettenmann B, Naidich T P. Functional magnetic resonance of human olfaction.  Neuroimaging Clin N Am. 2001;  11 ((2)) 237-250
  • 28 Bucher S F, Dieterich M, Wiesmann M, Weiss A, Zink R, Yousry T A, Brandt T. Cerebral functional magnetic resonance imaging of vestibular, auditory and nociceptive areas during galvanic stimulation.  Ann Neurol. 1998;  44 120-125
  • 29 Friston K J. Statistical parametric mapping and other analyses of functional imaging data. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. New York; Academic Press 1996: 363-386
  • 30 Dale A M, Buckner R L. Selective averaging of rapidly presented individual trials using fMRI.  Human Brain Mapping. 1997;  5 329-340
  • 31 Stippich C, Kapfer D, Hempel E, Heiland S, Sartor K. Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol.  Neurosci Lett. 2000;  285 155-159
  • 32 Ackermann H, Wildgruber D, Grodd W. Neuroradiologic activation studies of cerebral organization of language capacities. A review of literature.  Fortschr Neurol Psychiatr. 1997;  65 182-194
  • 33 Woods R P, Cherry S, Mazziotta J C. Rapid automated algorithm for aligning and reslicing PET images.  J Comput Assist Tomogr. 1992;  16 620-633
  • 34 Hajnal J V, Mayers R, Oatridge A, Schwieso J E, Young J R, Bydder G M. Artifacts due to stimulus correlated motion in functional imaging of the brain.  Magn Reson Med. 1994;  31 283-291
  • 35 Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Stuttgart; Thieme 1988
  • 36 Mazziotta J C, Toga A W, Evans A, Fox P T, Lancaster J. A probabilistic atlas of the human brain: Theory and rationale for its development.  NeuroImage. 1995;  2 89-101
  • 37 Fox P T. Spatial normalization origins: Objectives, applications, and alternatives.  Human Brain Mapping. 1995;  3 161-164
  • 38 Naidich T P, Hof P R, Yousry T A, Yousry I. The motor cortex: anatomic substrates of function.  Neuroimaging Clin N Am. 2001;  11 171-193
  • 39 Wunderlich G, Knorr U, Herzog H, et al. Precentral glioma location determines the displacement of cortical hand representation.  Neurosurgery. 1998;  42 18-27
  • 40 Naidich T P, Hof P R, Gannon P J, Yousry T A, Yousry I. Anatomic substrates of language: emphasizing speech.  Neuroimaging Clin N Am. 2001;  11 305-341
  • 41 Jack C R, Thompson R M, Butts R K, Sharbrough F W, Kelly P J, Hanson D P, Riederer S J, Ehman R L, Hangiandreou N J, Cascino G D. Sensory motor cortex: correlation of presurgical mapping with functional MR and invasive cortical mapping.  Radiology. 1994;  190 85-92
  • 42 Binder J R, Frost J A, Hammeke T A, Cox R W, Rao S M, Prieto T. Human brain language areas identified by functional MRI.  J Neurosci. 1997;  17 353-362
  • 43 Yousry T A, Schmid U D, Jassoy A G, Schmidt D, Eisner W E, Reulen H J, Reiser M F, Lissner J. Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery.  Radiology. 1995;  195 23-29
  • 44 Binder J R, Swanson S J, Hammeke T A, Morris G L, Mueller W M, Fischer M, Benbadis S, Frost J A, Rao S M, Haughton V M. Determination of language dominance using functional MRI: a comparison with the Wada-test.  Neurology. 1996;  46 978-984
  • 45 Krings T, Buchbinder B R, Butler W E, Chiappa K H, Jiang H J, Cosgrove G R, Rosen B R. Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function.  Neurology. 1997;  48 1406-1416
  • 46 Stippich C, Freitag P, Kassubek J, Sörös P, Kamada K, Kober H, Scheffler K, Hopfengärtner R, Bilecen D, Radü E W, Vieth J B. Motor, somatosensory and auditory cortex localization by fMRI and MEG.  NeuroReport. 1998;  9 1953-1957
  • 47 Krings T, Topper R, Reinges M H, Foltys H, Spetzger U, Chiappa K H, Gilsbach J M, Thron A. Hemodynamic changes in simple partial epilepsy: a functional MRI study.  Neurology. 2000;  54 524-527
  • 48 Detre J A, Sirven J I, Alsop D C, Óconnor M J, French J A. Localization of subclinical ictal activity by functional magnetic resonance imaging: correlation with invasive monitoring.  Ann Neurol. 1995;  38 618-624
  • 49 Hertz-Pannier L, Gaillard W D, Mott S H, Cuenod C A, Bookheimer S Y, Weinstein S, Conry J, Papero P H, Schiff S J, Le Bihan D, Theodore W H. Noninvasive assessment of language dominance in children and adolescents with functional MRI: A preliminary study.  Neurology. 1997;  48 1003-1012
  • 50 Bucher S F, Seelos K C, Dodel R C, Reiser M, Oertel W H. Activation mapping in essential tremor with functional magnetic resonance imaging.  Ann Neurol. 1997;  41 32-40
  • 51 Wenz F, Schad L R, Knopp M V, Baudendistel K T, Flomer F, Schörder J, van Kaick G. Functional magnetic resonance imaging at 1.5 T: activation pattern in schizophrenic patients receiving neuroleptic medication.  Magn Reson Med. 1994;  12 975-982
  • 52 Carter C S, MacDonald A W, Ross L L, Stenger V A. Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study.  Am J Psychiatry. 2001;  158 1423-1428
  • 53 Breitner H C, Gollub R L, Weisskoff R M, Kennedy D N, Makris N, Berke J D, Goodman J M, Kantor H L, Gastfriend D R, Riorden J P, Mathew R T, Rosen B R, Hyman S E. Acute effects of cocaine on human brain activity and emotion.  Neuron. 1997;  19 591-611
  • 54 Birbaumer N, Lutzenberger W, Montoya P, Larbig W, Unertl K, Topfner S, Grodd W, Taub E, Flor H. Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization.  J Neurosci. 1997;  17 5503-5508
  • 55 Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995: 480-484
  • 56 Petersson K M, Elfgren C, Ingvar M. A dynamic role of the medial temporal lobe during retrieval of declarative memory in man.  Neuroimage. 1997;  6 1-11
  • 57 Büchel C, Morris J, Dolan R J, Friston K J. Brain systems mediating aversive conditioning: an event-related fMRI study.  Neuron. 1998;  20 947-957

Dr. med. C. Stippich

Neurologische Klinik, Abteilung Neuroradiologie, Ruprecht-Karls-Universität


Im Neuenheimer Feld 400

69120 Heidelberg

Phone: + 49 6221 567566

Fax: + 49 6221 564673

Email: Christoph-stippich@med.uni-heidelberg.de