Subscribe to RSS
DOI: 10.1055/s-2002-19804
Synthesis of Optically Active C-Allylglycine Derivatives and Conversion into Isoquinolones
Publication History
Publication Date:
03 August 2004 (online)
Abstract
C-Allylglycyl amides can be efficiently synthesized via an auxiliary controlled diastereoselective aza-Claisen rearrangement. The stereodirecting unit is placed on an auxiliary derived from commercially available (S)-proline. After N-allylation, the obtained optically active allylamines were reacted with various N-protected glycyl fluorides to give the (2R)-C-allylglycyl amides in good yields. The diastereoselectivity of the asymmetric allylation varied between 1:1 and >1:15 depending on the N-protective group, the auxiliary, and the reaction temperature. Likewise, the C-allyl-glycine derivatives can be used as monomers in peptide synthesis to synthesize (R)-proline derivatives or chiral isoquinolones; the latter should serve as building blocks in the total syntheses of alkaloids.
Key words
chiral auxiliaries - amino acids - isoquinolone - allylations - aza-Claisen rearrangement - stereoselective synthesis
-
1a
Fukami T.Yamakawa T.Niiyama K.Kojima H.Amano Y.Kanada F.Ozaki S.Fukuroda T.Ihara M.Yano M.Ishikawa K. J. Med. Chem. 1996, 39: 2313 -
1b
Kurokawa N.Ohfune Y. Tetrahedron 1993, 49: 6195 -
1c
Broxterman QB.Kaptein B.Kamphuis J.Schoemaker HE. J. Org. Chem. 1992, 57: 6286 -
1d
Baldwin JE.Norris WJ.Freeman RT.Bradley M.Adlington RM.Long-Fox S.Schofield CJ. J. Chem. Soc., Chem. Commun. 1988, 1128 -
2a
Voigtmann U.Blechert S. Synthesis 2000, 893 -
2b
Grossmith CE.Senia F.Wagner J. Synlett 1999, 1660 -
2c
Gao Y.Lane-Bell P.Vederas JC. J. Org. Chem. 1998, 63: 2133 -
2d
Rutjes FPJT.Schoemaker HE. Tetrahedron Lett. 1997, 38: 677 -
2e
Bossler HG.Seebach D. Helv. Chim. Acta 1994, 77: 1124 -
2f
Seebach D.Beck AK.Bossle HG.Gerber C.Ko SY.Murtiashaw CW.Naef R.Shoda S.Thaler A.Krieger M.Wenger R. Helv. Chim. Acta 1993, 76: 1564 -
2g
Baldwin JE.Adlington RM.Flitsch SL.Ting H.-H.Turner NJ. J. Chem. Soc., Chem. Commun. 1986, 1305 -
3a
Depew KM.Kamenecka TM.Danishefsky SJ. Tetrahedron Lett. 2000, 41: 289 -
3b
Rutjes FPJT.Veerman JJN.Meester WJN.Hiemstra H.Schoemaker HE. Eur. J. Org. Chem. 1999, 1127 -
3c
Ahn KH.Kim S.-K.Ham C. Tetrahedron Lett. 1998, 39: 6321 -
3d
Kamenecka TM.Danishefsky SJ. Angew. Chem., Int. Ed. 1998, 37: 2995 ; Angew. Chem. 1998, 110, 3166 -
3e
Hale KJ.Cai J.Delisser V.Manaviazar S.Peak SA.Bhatia GS.Collins TC.Jogiya N. Tetrahedron 1996, 52: 1047 -
3f
Oppolzer W.Tamura O.Deerberg J. Helv. Chim. Acta 1992, 75: 1965 -
3g
Evans DA.Britton TC.Dorow RL.Dellaria JF. Tetrahedron 1988, 44: 5525 -
4a
Kitagawa O.Hanano T.Kikuchi N.Taguchi T. Tetrahedron Lett. 1993, 34: 2165 -
4b
Evans DA.Britton TC.Ellman JA.Dorow RL. J. Am. Chem. Soc. 1990, 112: 4011 -
5a
Myers AG.Schnider P.Kwon S.Kung DW. J. Org. Chem. 1999, 64: 3322 -
5b
Ooi T.Kameda M.Maruoka K. J. Am. Chem. Soc. 1999, 121: 6519 -
5c
Juaristi E.Leon-Romo JL.Ramirez-Quiros Y. J. Org. Chem. 1999, 64: 2914 -
5d
Guillena G.Najera C. Tetrahedron: Asymmetry 1998, 9: 3935 -
5e
Bull SD.Davies SG.Epstein SW.Leech MA.Ouzman JVA. J. Chem. Soc., Perkin Trans. 1 1998, 2321 -
5f
Porzi G.Sandri S.Verrocchio P. Tetrahedron: Asymmetry 1998, 9: 119 -
5g
Oppolzer W.Bienayme H.Genevois-Borella A. J. Am. Chem. Soc. 1991, 113: 9660 -
6a
Fang X.Johannsen M.Yao S.Gathergood N.Hazell RG.Joergensen KA. J. Org. Chem. 1999, 64: 4844 -
6b
Yamamoto Y.Onuki S.Yumoto M.Asao N. Heterocycles 1998, 47: 765 -
6c
Kardassis G.Brungs P.Steckhan E. Tetrahedron 1998, 54: 3471 -
6d
Loh T.-P.Ho DS.-C.Xu K.-C.Sim K.-Y. Tetrahedron Lett. 1997, 38: 865 -
6e
Hanessian S.Yang R.-Y. Tetrahedron Lett. 1996, 37: 5273 -
6f
Hanessian S.Yang R.-Y. Tetrahedron Lett. 1996, 37: 8997 -
6g
Kurokawa N.Ohfune Y. Tetrahedron 1993, 49: 6195 -
6h
Yamamoto Y.Ito W. Tetrahedron 1988, 44: 5415 -
7a
Kazmaier U.Maier S. J. Org. Chem. 1999, 64: 4574 -
7b
Kazmaier U.Krebs A. Angew. Chem., Int. Ed. Engl. 1995, 34: 2012 ; Angew. Chem. 1995, 107, 2213 -
8a
Molander GA.McKie JA. J. Org. Chem. 1993, 58: 7216 -
8b
Sandrine L.-A.Savignac M.Dupuis C.Genet JP. Bull. Soc. Chim. Fr. 1995, 132: 1157 - 9
Winterfeldt E. Synthesis 1975, 617 - 10
Aurich HG.Frenzen G.Gentes C. Chem. Ber. 1993, 126: 787 - 11
Corey EJ.Venkatesvarlu A. J. Am. Chem. Soc. 1972, 94: 6190 - 12
Taniguchi T.Ogasawara K. Tetrahedron Lett. 1998, 39: 4679 -
13a
Loeppky RN.Xiong H. J. Labelled Compd. Radiopharm. 1994, 34: 1099 -
13b
Elsworth JF.Msimang LN.Jackson GE. S. Afr. J. Chem. 1996, 49: 35 - 14
Valls N.Segarra VM.Maillo LC.Bosch J. Tetrahedron 1991, 47: 1065 - 15
Peter J. Can. J. Chem. 1980, 58: 1281 -
16a
Groß S.Laabs S.Scherrmann A.Sudau A.Zhang N.Nubbemeyer U. J. Prak. Chem. 2000, 342: 711 -
16b
Carpino LA.Mansour E.-SME.Sadat-Alaee D. J. Org. Chem. 1991, 56: 2611 -
16c
Babu SVV.Gopi HN.Ananda K. Ind. J. Chem., Sec. B 2000, 39: 384 -
16d
Olah GA.Nojima M.Kerekes I. Synthesis 1973, 487 -
16e
Olah GA.Kuhn S.Beke S. Chem. Ber. 1956, 89: 862 -
17a
Laabs S.Scherrmann A.Sudau A.Diederich M.Kierig C.Nubbemeyer U. Synlett 1999, 25 -
17b
Sudau A.Münch W.Bats JW.Nubbemeyer U. J. Org. Chem. 2000, 65: 1710 -
19a
Evans DA.Weber AE. J. Am. Chem. Soc. 1987, 109: 7151 -
19b
Sabol JS.Flynn GA.Friedrich D.Huber EW. Tetrahedron Lett. 1997, 38: 3687 -
19c
Waid PP.Flynn GA.Huber EW.Sabol JS. Tetrahedron Lett. 1996, 37: 4091 - 20
meso-12: (a)
Ueda T.Saito M.Kato T.Izumiya N. Bull. Chem. Soc. Jpn. 1983, 56: 568 - 20 C2-11: (b)
Ishihara K.Ohara S.Yamamoto H. J. Org. Chem. 1996, 61: 4196 - 20 C2-11: (c)
Eguchi C.Kakuta A. Bull. Chem. Soc. Jpn. 1974, 47: 2277 - 20 C2-11: (d)
Young PE.Madison V.Blout ER. J. Am. Chem. Soc. 1973, 95: 6142 -
21a
Ariza J.Font J.Ortuno RM. Tetrahedron 1990, 46: 1931 -
21b
White JD.Badger RA.Kezar HSIII.Pallenberg AJ.Schiehser GA. Tetrahedron 1989, 45: 6631 -
21c
Kraatz U.Hasenbrink W.Wamhoff H.Korte F. Chem. Ber. 1971, 104: 2458 - Synthesis of related C-allylglycyl amides:
-
22a
Pandey G.Das P.Reddy PY. Eur. J. Org. Chem. 2000, 657 -
22b
Pandey G.Reddy PY.Das P. Tetrahedron Lett. 1996, 37: 3175 - 23
Cossy J. Eur. J. Org. Chem. 1999, 1925 - 24
Rita PM. J. Org. Chem. 1997, 62: 6862 - Reviews on Claisen Rearrangements:
-
26a
Ziegler FE. Chem. Rev. 1988, 88: 1423 -
26b
Frauenrath H. In Houben Weyl: Stereoselective Synthesis Vol. E21d:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1995. p.3301-3756 -
26c
Wipf P. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I.Paquette LA. Pergamon; New York: 1991. p.827-873 -
26d
Hill RK. In Asymmetric Synthesis Vol. 3:Morrison JD. Academic Press; New York: 1984. p.503-572 - For enantioselective Claisen rearrangements, see:
-
27a
Enders D.Knopp M.Schiffers R. Tetrahedron: Asymmetry 1996, 7: 1847 -
27b
Clayden J.Helliwell M.McCarthy C.Westlund N. J. Chem. Soc., Perkin Trans. 1 2000, 3232 -
27c
Lemieux RM.Devine PN.Mechelke MF.Meyers AI. J. Org. Chem. 1999, 64: 3585 -
27d
Lemieux RM.Meyers AI. J. Am. Chem. Soc. 1998, 120: 5453 -
27e
Metz P.Hungerhoff B. J. Org. Chem. 1997, 62: 4442 -
27f
Roush WR.Works AB. Tetrahedron Lett. 1997, 38: 351 -
27g
Yoon TP.MacMillan DWC. J. Am. Chem. Soc. 2001, 123: 2911 - The Me3Al activates the acid fluorides to start the additions/acylations. As known in the literature tertiary amines and acid fluorides do not react spontaneously:
-
28a
Granitza D.Beyermann M.Wenschuh H.Haber H.Carpino LA.Truran GA.Bienert M. J. Chem. Soc., Chem. Commun. 1995, 2223 -
28b
Carpino LA.Mansour E.-SME.El-Faham A. J. Org. Chem. 1993, 58: 4162 -
28c
Carpino LA.Sadat-Aalaee D.Chao H.-G.DeSelms RH. J. Am. Chem. Soc. 1990, 112: 9651 -
29a
Evans DA.Bartoli J.Shih TL. J. Am. Chem. Soc. 1981, 103: 2127 -
29b
Richter W.Sucrow W. Chem. Ber. 1971, 104: 3679 -
30a
Johnson WS.Bauer VJ.Margrave JL.Frisch MA.Dreger LH.Hubbard WN. J. Am. Chem. Soc. 1961, 83: 606 -
30b
Vittorelli P.Hansen H.-J.Schmid H. Helv. Chim. Acta 1975, 58: 1293 -
30c
Vance RL.Rondan NG.Houk KN.Jensen F.Borden WT.Komornicki A.Wimmer E. J. Am. Chem. Soc. 1988, 110: 2314 -
30d
Büchi G.Powell JE. J. Am. Chem. Soc. 1970, 92: 3162 -
30e
Abelmann MM.Funk RF.Munger JD. J. Am. Chem. Soc. 1982, 104: 4030 - 31 As an alternative, the use of C2-symmetric pyrrolidine derivatives should generate the corresponding amides with high auxiliary controlled chiral induction:
He S.Kozmin SA.Rawal VH. J. Am. Chem. Soc. 2000, 122: 190 - 32
Zhao S.Totleben MJ.Freeman JP.Bacon CL.Fox GB.O’Driscoll E.Foley AG.Kelly J.Farrell U.Regan C.Mizsak SA.Szmuszkovicz J. Bioorg. Med. Chem. 1999, 7: 1637 - 33
Nubbemeyer U. Synthesis 1993, 1120
References
For detailed data, see Figure [2] .
25Chiral HPLC analyses were run using triacetyl cellulose (Merck), Chirobiotic-V and Chirobiotic-T columns (Baker). Flow rates: 1-2 mL/min, eluents: MeOH, EtOH, i-PrOH and varying mixtures of alcohol-hexanes. For chiral 1H NMR shift experiments Eu(tfc)3 (tris-[3-(trifluoromethylhydroxy-methylene)-(+)-camphorato]europium) was used. Ana-lyzing the singlet at δ = 7.35, different downfield shifts were found for the enantiomers.