Abstract
C-Allylglycyl amides can be efficiently synthesized via an auxiliary controlled diastereoselective
aza-Claisen rearrangement. The stereodirecting unit is placed on an auxiliary derived
from commercially available (S)-proline. After N-allylation, the obtained optically active allylamines were reacted
with various N-protected glycyl fluorides to give the (2R)-C-allylglycyl amides in good yields. The diastereoselectivity of the asymmetric allylation
varied between 1:1 and >1:15 depending on the N-protective group, the auxiliary, and the reaction temperature. Likewise, the C-allyl-glycine derivatives can be used as monomers in peptide synthesis to synthesize
(R)-proline derivatives or chiral isoquinolones; the latter should serve as building
blocks in the total syntheses of alkaloids.
Key words
chiral auxiliaries - amino acids - isoquinolone - allylations - aza-Claisen rearrangement
- stereoselective synthesis
References
<A NAME="RT06901SS-1A">1a</A>
Fukami T.
Yamakawa T.
Niiyama K.
Kojima H.
Amano Y.
Kanada F.
Ozaki S.
Fukuroda T.
Ihara M.
Yano M.
Ishikawa K.
J. Med. Chem.
1996,
39:
2313
<A NAME="RT06901SS-1B">1b</A>
Kurokawa N.
Ohfune Y.
Tetrahedron
1993,
49:
6195
<A NAME="RT06901SS-1C">1c</A>
Broxterman QB.
Kaptein B.
Kamphuis J.
Schoemaker HE.
J. Org. Chem.
1992,
57:
6286
<A NAME="RT06901SS-1D">1d</A>
Baldwin JE.
Norris WJ.
Freeman RT.
Bradley M.
Adlington RM.
Long-Fox S.
Schofield CJ.
J. Chem. Soc., Chem. Commun.
1988,
1128
<A NAME="RT06901SS-2A">2a</A>
Voigtmann U.
Blechert S.
Synthesis
2000,
893
<A NAME="RT06901SS-2B">2b</A>
Grossmith CE.
Senia F.
Wagner J.
Synlett
1999,
1660
<A NAME="RT06901SS-2C">2c</A>
Gao Y.
Lane-Bell P.
Vederas JC.
J. Org. Chem.
1998,
63:
2133
<A NAME="RT06901SS-2D">2d</A>
Rutjes FPJT.
Schoemaker HE.
Tetrahedron Lett.
1997,
38:
677
<A NAME="RT06901SS-2E">2e</A>
Bossler HG.
Seebach D.
Helv. Chim. Acta
1994,
77:
1124
<A NAME="RT06901SS-2F">2f</A>
Seebach D.
Beck AK.
Bossle HG.
Gerber C.
Ko SY.
Murtiashaw CW.
Naef R.
Shoda S.
Thaler A.
Krieger M.
Wenger R.
Helv. Chim. Acta
1993,
76:
1564
<A NAME="RT06901SS-2G">2g</A>
Baldwin JE.
Adlington RM.
Flitsch SL.
Ting H.-H.
Turner NJ.
J. Chem. Soc., Chem. Commun.
1986,
1305
<A NAME="RT06901SS-3A">3a</A>
Depew KM.
Kamenecka TM.
Danishefsky SJ.
Tetrahedron Lett.
2000,
41:
289
<A NAME="RT06901SS-3B">3b</A>
Rutjes FPJT.
Veerman JJN.
Meester WJN.
Hiemstra H.
Schoemaker HE.
Eur. J. Org. Chem.
1999,
1127
<A NAME="RT06901SS-3C">3c</A>
Ahn KH.
Kim S.-K.
Ham C.
Tetrahedron Lett.
1998,
39:
6321
<A NAME="RT06901SS-3D">3d</A>
Kamenecka TM.
Danishefsky SJ.
Angew. Chem., Int. Ed.
1998,
37:
2995 ; Angew. Chem. 1998, 110, 3166
<A NAME="RT06901SS-3E">3e</A>
Hale KJ.
Cai J.
Delisser V.
Manaviazar S.
Peak SA.
Bhatia GS.
Collins TC.
Jogiya N.
Tetrahedron
1996,
52:
1047
<A NAME="RT06901SS-3F">3f</A>
Oppolzer W.
Tamura O.
Deerberg J.
Helv. Chim. Acta
1992,
75:
1965
<A NAME="RT06901SS-3G">3g</A>
Evans DA.
Britton TC.
Dorow RL.
Dellaria JF.
Tetrahedron
1988,
44:
5525
<A NAME="RT06901SS-4A">4a</A>
Kitagawa O.
Hanano T.
Kikuchi N.
Taguchi T.
Tetrahedron Lett.
1993,
34:
2165
<A NAME="RT06901SS-4B">4b</A>
Evans DA.
Britton TC.
Ellman JA.
Dorow RL.
J. Am. Chem. Soc.
1990,
112:
4011
<A NAME="RT06901SS-5A">5a</A>
Myers AG.
Schnider P.
Kwon S.
Kung DW.
J. Org. Chem.
1999,
64:
3322
<A NAME="RT06901SS-5B">5b</A>
Ooi T.
Kameda M.
Maruoka K.
J. Am. Chem. Soc.
1999,
121:
6519
<A NAME="RT06901SS-5C">5c</A>
Juaristi E.
Leon-Romo JL.
Ramirez-Quiros Y.
J. Org. Chem.
1999,
64:
2914
<A NAME="RT06901SS-5D">5d</A>
Guillena G.
Najera C.
Tetrahedron: Asymmetry
1998,
9:
3935
<A NAME="RT06901SS-5E">5e</A>
Bull SD.
Davies SG.
Epstein SW.
Leech MA.
Ouzman JVA.
J. Chem. Soc., Perkin Trans. 1
1998,
2321
<A NAME="RT06901SS-5F">5f</A>
Porzi G.
Sandri S.
Verrocchio P.
Tetrahedron: Asymmetry
1998,
9:
119
<A NAME="RT06901SS-5G">5g</A>
Oppolzer W.
Bienayme H.
Genevois-Borella A.
J. Am. Chem. Soc.
1991,
113:
9660
<A NAME="RT06901SS-6A">6a</A>
Fang X.
Johannsen M.
Yao S.
Gathergood N.
Hazell RG.
Joergensen KA.
J. Org. Chem.
1999,
64:
4844
<A NAME="RT06901SS-6B">6b</A>
Yamamoto Y.
Onuki S.
Yumoto M.
Asao N.
Heterocycles
1998,
47:
765
<A NAME="RT06901SS-6C">6c</A>
Kardassis G.
Brungs P.
Steckhan E.
Tetrahedron
1998,
54:
3471
<A NAME="RT06901SS-6D">6d</A>
Loh T.-P.
Ho DS.-C.
Xu K.-C.
Sim K.-Y.
Tetrahedron Lett.
1997,
38:
865
<A NAME="RT06901SS-6E">6e</A>
Hanessian S.
Yang R.-Y.
Tetrahedron Lett.
1996,
37:
5273
<A NAME="RT06901SS-6F">6f</A>
Hanessian S.
Yang R.-Y.
Tetrahedron Lett.
1996,
37:
8997
<A NAME="RT06901SS-6G">6g</A>
Kurokawa N.
Ohfune Y.
Tetrahedron
1993,
49:
6195
<A NAME="RT06901SS-6H">6h</A>
Yamamoto Y.
Ito W.
Tetrahedron
1988,
44:
5415
<A NAME="RT06901SS-7A">7a</A>
Kazmaier U.
Maier S.
J. Org. Chem.
1999,
64:
4574
<A NAME="RT06901SS-7B">7b</A>
Kazmaier U.
Krebs A.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2012 ; Angew. Chem. 1995, 107, 2213
<A NAME="RT06901SS-8A">8a</A>
Molander GA.
McKie JA.
J. Org. Chem.
1993,
58:
7216
<A NAME="RT06901SS-8B">8b</A>
Sandrine L.-A.
Savignac M.
Dupuis C.
Genet JP.
Bull. Soc. Chim. Fr.
1995,
132:
1157
<A NAME="RT06901SS-9">9</A>
Winterfeldt E.
Synthesis
1975,
617
<A NAME="RT06901SS-10">10</A>
Aurich HG.
Frenzen G.
Gentes C.
Chem. Ber.
1993,
126:
787
<A NAME="RT06901SS-11">11</A>
Corey EJ.
Venkatesvarlu A.
J. Am. Chem. Soc.
1972,
94:
6190
<A NAME="RT06901SS-12">12</A>
Taniguchi T.
Ogasawara K.
Tetrahedron Lett.
1998,
39:
4679
<A NAME="RT06901SS-13A">13a</A>
Loeppky RN.
Xiong H.
J. Labelled Compd. Radiopharm.
1994,
34:
1099
<A NAME="RT06901SS-13B">13b</A>
Elsworth JF.
Msimang LN.
Jackson GE.
S. Afr. J. Chem.
1996,
49:
35
<A NAME="RT06901SS-14">14</A>
Valls N.
Segarra VM.
Maillo LC.
Bosch J.
Tetrahedron
1991,
47:
1065
<A NAME="RT06901SS-15">15</A>
Peter J.
Can. J. Chem.
1980,
58:
1281
<A NAME="RT06901SS-16A">16a</A>
Groß S.
Laabs S.
Scherrmann A.
Sudau A.
Zhang N.
Nubbemeyer U.
J. Prak. Chem.
2000,
342:
711
<A NAME="RT06901SS-16B">16b</A>
Carpino LA.
Mansour E.-SME.
Sadat-Alaee D.
J. Org. Chem.
1991,
56:
2611
<A NAME="RT06901SS-16C">16c</A>
Babu SVV.
Gopi HN.
Ananda K.
Ind. J. Chem., Sec. B
2000,
39:
384
<A NAME="RT06901SS-16D">16d</A>
Olah GA.
Nojima M.
Kerekes I.
Synthesis
1973,
487
<A NAME="RT06901SS-16E">16e</A>
Olah GA.
Kuhn S.
Beke S.
Chem. Ber.
1956,
89:
862
<A NAME="RT06901SS-17A">17a</A>
Laabs S.
Scherrmann A.
Sudau A.
Diederich M.
Kierig C.
Nubbemeyer U.
Synlett
1999,
25
<A NAME="RT06901SS-17B">17b</A>
Sudau A.
Münch W.
Bats JW.
Nubbemeyer U.
J. Org. Chem.
2000,
65:
1710
<A NAME="RT06901SS-18">18</A>
For detailed data, see Figure
[2]
.
<A NAME="RT06901SS-19A">19a</A>
Evans DA.
Weber AE.
J. Am. Chem. Soc.
1987,
109:
7151
<A NAME="RT06901SS-19B">19b</A>
Sabol JS.
Flynn GA.
Friedrich D.
Huber EW.
Tetrahedron Lett.
1997,
38:
3687
<A NAME="RT06901SS-19C">19c</A>
Waid PP.
Flynn GA.
Huber EW.
Sabol JS.
Tetrahedron Lett.
1996,
37:
4091
<A NAME="RT06901SS-20">20</A>
meso-12: (a)
Ueda T.
Saito M.
Kato T.
Izumiya N.
Bull. Chem. Soc. Jpn.
1983,
56:
568
<A NAME="RT06901SS-20">20</A> C2-11: (b)
Ishihara K.
Ohara S.
Yamamoto H.
J. Org. Chem.
1996,
61:
4196
<A NAME="RT06901SS-20">20</A> C2-11: (c)
Eguchi C.
Kakuta A.
Bull. Chem. Soc. Jpn.
1974,
47:
2277
<A NAME="RT06901SS-20">20</A> C2-11: (d)
Young PE.
Madison V.
Blout ER.
J. Am. Chem. Soc.
1973,
95:
6142
<A NAME="RT06901SS-21A">21a</A>
Ariza J.
Font J.
Ortuno RM.
Tetrahedron
1990,
46:
1931
<A NAME="RT06901SS-21B">21b</A>
White JD.
Badger RA.
Kezar HSIII.
Pallenberg AJ.
Schiehser GA.
Tetrahedron
1989,
45:
6631
<A NAME="RT06901SS-21C">21c</A>
Kraatz U.
Hasenbrink W.
Wamhoff H.
Korte F.
Chem. Ber.
1971,
104:
2458
Synthesis of related C-allylglycyl amides:
<A NAME="RT06901SS-22A">22a</A>
Pandey G.
Das P.
Reddy PY.
Eur. J. Org. Chem.
2000,
657
<A NAME="RT06901SS-22B">22b</A>
Pandey G.
Reddy PY.
Das P.
Tetrahedron Lett.
1996,
37:
3175
<A NAME="RT06901SS-23">23</A>
Cossy J.
Eur. J. Org. Chem.
1999,
1925
<A NAME="RT06901SS-24">24</A>
Rita PM.
J. Org. Chem.
1997,
62:
6862
<A NAME="RT06901SS-25">25</A>
Chiral HPLC analyses were run using triacetyl cellulose (Merck), Chirobiotic-V and
Chirobiotic-T columns (Baker). Flow rates: 1-2 mL/min, eluents: MeOH, EtOH, i-PrOH and varying mixtures of alcohol-hexanes. For chiral 1H NMR shift experiments Eu(tfc)3 (tris-[3-(trifluoromethylhydroxy-methylene)-(+)-camphorato]europium) was used. Ana-lyzing
the singlet at δ = 7.35, different downfield shifts were found for the enantiomers.
Reviews on Claisen Rearrangements:
<A NAME="RT06901SS-26A">26a</A>
Ziegler FE.
Chem. Rev.
1988,
88:
1423
<A NAME="RT06901SS-26B">26b</A>
Frauenrath H. In
Houben Weyl: Stereoselective Synthesis
Vol. E21d:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.3301-3756
<A NAME="RT06901SS-26C">26c</A>
Wipf P. In
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Paquette LA.
Pergamon;
New York:
1991.
p.827-873
<A NAME="RT06901SS-26D">26d</A>
Hill RK. In
Asymmetric Synthesis
Vol. 3:
Morrison JD.
Academic Press;
New York:
1984.
p.503-572
For enantioselective Claisen rearrangements, see:
<A NAME="RT06901SS-27A">27a</A>
Enders D.
Knopp M.
Schiffers R.
Tetrahedron: Asymmetry
1996,
7:
1847
<A NAME="RT06901SS-27B">27b</A>
Clayden J.
Helliwell M.
McCarthy C.
Westlund N.
J. Chem. Soc., Perkin Trans. 1
2000,
3232
<A NAME="RT06901SS-27C">27c</A>
Lemieux RM.
Devine PN.
Mechelke MF.
Meyers AI.
J. Org. Chem.
1999,
64:
3585
<A NAME="RT06901SS-27D">27d</A>
Lemieux RM.
Meyers AI.
J. Am. Chem. Soc.
1998,
120:
5453
<A NAME="RT06901SS-27E">27e</A>
Metz P.
Hungerhoff B.
J. Org. Chem.
1997,
62:
4442
<A NAME="RT06901SS-27F">27f</A>
Roush WR.
Works AB.
Tetrahedron Lett.
1997,
38:
351
<A NAME="RT06901SS-27G">27g</A>
Yoon TP.
MacMillan DWC.
J. Am. Chem. Soc.
2001,
123:
2911
The Me3Al activates the acid fluorides to start the additions/acylations. As known in the
literature tertiary amines and acid fluorides do not react spontaneously:
<A NAME="RT06901SS-28A">28a</A>
Granitza D.
Beyermann M.
Wenschuh H.
Haber H.
Carpino LA.
Truran GA.
Bienert M.
J. Chem. Soc., Chem. Commun.
1995,
2223
<A NAME="RT06901SS-28B">28b</A>
Carpino LA.
Mansour E.-SME.
El-Faham A.
J. Org. Chem.
1993,
58:
4162
<A NAME="RT06901SS-28C">28c</A>
Carpino LA.
Sadat-Aalaee D.
Chao H.-G.
DeSelms RH.
J. Am. Chem. Soc.
1990,
112:
9651
<A NAME="RT06901SS-29A">29a</A>
Evans DA.
Bartoli J.
Shih TL.
J. Am. Chem. Soc.
1981,
103:
2127
<A NAME="RT06901SS-29B">29b</A>
Richter W.
Sucrow W.
Chem. Ber.
1971,
104:
3679
<A NAME="RT06901SS-30A">30a</A>
Johnson WS.
Bauer VJ.
Margrave JL.
Frisch MA.
Dreger LH.
Hubbard WN.
J. Am. Chem. Soc.
1961,
83:
606
<A NAME="RT06901SS-30B">30b</A>
Vittorelli P.
Hansen H.-J.
Schmid H.
Helv. Chim. Acta
1975,
58:
1293
<A NAME="RT06901SS-30C">30c</A>
Vance RL.
Rondan NG.
Houk KN.
Jensen F.
Borden WT.
Komornicki A.
Wimmer E.
J. Am. Chem. Soc.
1988,
110:
2314
<A NAME="RT06901SS-30D">30d</A>
Büchi G.
Powell JE.
J. Am. Chem. Soc.
1970,
92:
3162
<A NAME="RT06901SS-30E">30e</A>
Abelmann MM.
Funk RF.
Munger JD.
J. Am. Chem. Soc.
1982,
104:
4030
<A NAME="RT06901SS-31">31</A> As an alternative, the use of C2-symmetric pyrrolidine derivatives should generate
the corresponding amides with high auxiliary controlled chiral induction:
He S.
Kozmin SA.
Rawal VH.
J. Am. Chem. Soc.
2000,
122:
190
<A NAME="RT06901SS-32">32</A>
Zhao S.
Totleben MJ.
Freeman JP.
Bacon CL.
Fox GB.
O’Driscoll E.
Foley AG.
Kelly J.
Farrell U.
Regan C.
Mizsak SA.
Szmuszkovicz J.
Bioorg. Med. Chem.
1999,
7:
1637
<A NAME="RT06901SS-33">33</A>
Nubbemeyer U.
Synthesis
1993,
1120