Abstract
C-Allylglycyl amides can be efficiently synthesized via an auxiliary controlled diastereoselective aza-Claisen rearrangement. The stereodirecting unit is placed on an auxiliary derived from commercially available (S)-proline. After N-allylation, the obtained optically active allylamines were reacted with various N-protected glycyl fluorides to give the (2R)-C-allylglycyl amides in good yields. The diastereoselectivity of the asymmetric allylation varied between 1:1 and >1:15 depending on the N-protective group, the auxiliary, and the reaction temperature. Likewise, the C-allyl-glycine derivatives can be used as monomers in peptide synthesis to synthesize (R)-proline derivatives or chiral isoquinolones; the latter should serve as building blocks in the total syntheses of alkaloids.
Key words
chiral auxiliaries - amino acids - isoquinolone - allylations - aza-Claisen rearrangement - stereoselective synthesis
References
1a
Fukami T.
Yamakawa T.
Niiyama K.
Kojima H.
Amano Y.
Kanada F.
Ozaki S.
Fukuroda T.
Ihara M.
Yano M.
Ishikawa K.
J. Med. Chem.
1996,
39:
2313
1b
Kurokawa N.
Ohfune Y.
Tetrahedron
1993,
49:
6195
1c
Broxterman QB.
Kaptein B.
Kamphuis J.
Schoemaker HE.
J. Org. Chem.
1992,
57:
6286
1d
Baldwin JE.
Norris WJ.
Freeman RT.
Bradley M.
Adlington RM.
Long-Fox S.
Schofield CJ.
J. Chem. Soc., Chem. Commun.
1988,
1128
2a
Voigtmann U.
Blechert S.
Synthesis
2000,
893
2b
Grossmith CE.
Senia F.
Wagner J.
Synlett
1999,
1660
2c
Gao Y.
Lane-Bell P.
Vederas JC.
J. Org. Chem.
1998,
63:
2133
2d
Rutjes FPJT.
Schoemaker HE.
Tetrahedron Lett.
1997,
38:
677
2e
Bossler HG.
Seebach D.
Helv. Chim. Acta
1994,
77:
1124
2f
Seebach D.
Beck AK.
Bossle HG.
Gerber C.
Ko SY.
Murtiashaw CW.
Naef R.
Shoda S.
Thaler A.
Krieger M.
Wenger R.
Helv. Chim. Acta
1993,
76:
1564
2g
Baldwin JE.
Adlington RM.
Flitsch SL.
Ting H.-H.
Turner NJ.
J. Chem. Soc., Chem. Commun.
1986,
1305
3a
Depew KM.
Kamenecka TM.
Danishefsky SJ.
Tetrahedron Lett.
2000,
41:
289
3b
Rutjes FPJT.
Veerman JJN.
Meester WJN.
Hiemstra H.
Schoemaker HE.
Eur. J. Org. Chem.
1999,
1127
3c
Ahn KH.
Kim S.-K.
Ham C.
Tetrahedron Lett.
1998,
39:
6321
3d
Kamenecka TM.
Danishefsky SJ.
Angew. Chem., Int. Ed.
1998,
37:
2995 ; Angew. Chem. 1998, 110, 3166
3e
Hale KJ.
Cai J.
Delisser V.
Manaviazar S.
Peak SA.
Bhatia GS.
Collins TC.
Jogiya N.
Tetrahedron
1996,
52:
1047
3f
Oppolzer W.
Tamura O.
Deerberg J.
Helv. Chim. Acta
1992,
75:
1965
3g
Evans DA.
Britton TC.
Dorow RL.
Dellaria JF.
Tetrahedron
1988,
44:
5525
4a
Kitagawa O.
Hanano T.
Kikuchi N.
Taguchi T.
Tetrahedron Lett.
1993,
34:
2165
4b
Evans DA.
Britton TC.
Ellman JA.
Dorow RL.
J. Am. Chem. Soc.
1990,
112:
4011
5a
Myers AG.
Schnider P.
Kwon S.
Kung DW.
J. Org. Chem.
1999,
64:
3322
5b
Ooi T.
Kameda M.
Maruoka K.
J. Am. Chem. Soc.
1999,
121:
6519
5c
Juaristi E.
Leon-Romo JL.
Ramirez-Quiros Y.
J. Org. Chem.
1999,
64:
2914
5d
Guillena G.
Najera C.
Tetrahedron: Asymmetry
1998,
9:
3935
5e
Bull SD.
Davies SG.
Epstein SW.
Leech MA.
Ouzman JVA.
J. Chem. Soc., Perkin Trans. 1
1998,
2321
5f
Porzi G.
Sandri S.
Verrocchio P.
Tetrahedron: Asymmetry
1998,
9:
119
5g
Oppolzer W.
Bienayme H.
Genevois-Borella A.
J. Am. Chem. Soc.
1991,
113:
9660
6a
Fang X.
Johannsen M.
Yao S.
Gathergood N.
Hazell RG.
Joergensen KA.
J. Org. Chem.
1999,
64:
4844
6b
Yamamoto Y.
Onuki S.
Yumoto M.
Asao N.
Heterocycles
1998,
47:
765
6c
Kardassis G.
Brungs P.
Steckhan E.
Tetrahedron
1998,
54:
3471
6d
Loh T.-P.
Ho DS.-C.
Xu K.-C.
Sim K.-Y.
Tetrahedron Lett.
1997,
38:
865
6e
Hanessian S.
Yang R.-Y.
Tetrahedron Lett.
1996,
37:
5273
6f
Hanessian S.
Yang R.-Y.
Tetrahedron Lett.
1996,
37:
8997
6g
Kurokawa N.
Ohfune Y.
Tetrahedron
1993,
49:
6195
6h
Yamamoto Y.
Ito W.
Tetrahedron
1988,
44:
5415
7a
Kazmaier U.
Maier S.
J. Org. Chem.
1999,
64:
4574
7b
Kazmaier U.
Krebs A.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2012 ; Angew. Chem. 1995, 107, 2213
8a
Molander GA.
McKie JA.
J. Org. Chem.
1993,
58:
7216
8b
Sandrine L.-A.
Savignac M.
Dupuis C.
Genet JP.
Bull. Soc. Chim. Fr.
1995,
132:
1157
9
Winterfeldt E.
Synthesis
1975,
617
10
Aurich HG.
Frenzen G.
Gentes C.
Chem. Ber.
1993,
126:
787
11
Corey EJ.
Venkatesvarlu A.
J. Am. Chem. Soc.
1972,
94:
6190
12
Taniguchi T.
Ogasawara K.
Tetrahedron Lett.
1998,
39:
4679
13a
Loeppky RN.
Xiong H.
J. Labelled Compd. Radiopharm.
1994,
34:
1099
13b
Elsworth JF.
Msimang LN.
Jackson GE.
S. Afr. J. Chem.
1996,
49:
35
14
Valls N.
Segarra VM.
Maillo LC.
Bosch J.
Tetrahedron
1991,
47:
1065
15
Peter J.
Can. J. Chem.
1980,
58:
1281
16a
Groß S.
Laabs S.
Scherrmann A.
Sudau A.
Zhang N.
Nubbemeyer U.
J. Prak. Chem.
2000,
342:
711
16b
Carpino LA.
Mansour E.-SME.
Sadat-Alaee D.
J. Org. Chem.
1991,
56:
2611
16c
Babu SVV.
Gopi HN.
Ananda K.
Ind. J. Chem., Sec. B
2000,
39:
384
16d
Olah GA.
Nojima M.
Kerekes I.
Synthesis
1973,
487
16e
Olah GA.
Kuhn S.
Beke S.
Chem. Ber.
1956,
89:
862
17a
Laabs S.
Scherrmann A.
Sudau A.
Diederich M.
Kierig C.
Nubbemeyer U.
Synlett
1999,
25
17b
Sudau A.
Münch W.
Bats JW.
Nubbemeyer U.
J. Org. Chem.
2000,
65:
1710
18 For detailed data, see Figure
[2]
.
19a
Evans DA.
Weber AE.
J. Am. Chem. Soc.
1987,
109:
7151
19b
Sabol JS.
Flynn GA.
Friedrich D.
Huber EW.
Tetrahedron Lett.
1997,
38:
3687
19c
Waid PP.
Flynn GA.
Huber EW.
Sabol JS.
Tetrahedron Lett.
1996,
37:
4091
20
meso-12: (a) Ueda T.
Saito M.
Kato T.
Izumiya N.
Bull. Chem. Soc. Jpn.
1983,
56:
568
20 C2-11: (b) Ishihara K.
Ohara S.
Yamamoto H.
J. Org. Chem.
1996,
61:
4196
20 C2-11: (c) Eguchi C.
Kakuta A.
Bull. Chem. Soc. Jpn.
1974,
47:
2277
20 C2-11: (d) Young PE.
Madison V.
Blout ER.
J. Am. Chem. Soc.
1973,
95:
6142
21a
Ariza J.
Font J.
Ortuno RM.
Tetrahedron
1990,
46:
1931
21b
White JD.
Badger RA.
Kezar HSIII.
Pallenberg AJ.
Schiehser GA.
Tetrahedron
1989,
45:
6631
21c
Kraatz U.
Hasenbrink W.
Wamhoff H.
Korte F.
Chem. Ber.
1971,
104:
2458
Synthesis of related C-allylglycyl amides:
22a
Pandey G.
Das P.
Reddy PY.
Eur. J. Org. Chem.
2000,
657
22b
Pandey G.
Reddy PY.
Das P.
Tetrahedron Lett.
1996,
37:
3175
23
Cossy J.
Eur. J. Org. Chem.
1999,
1925
24
Rita PM.
J. Org. Chem.
1997,
62:
6862
25 Chiral HPLC analyses were run using triacetyl cellulose (Merck), Chirobiotic-V and Chirobiotic-T columns (Baker). Flow rates: 1-2 mL/min, eluents: MeOH, EtOH, i-PrOH and varying mixtures of alcohol-hexanes. For chiral 1H NMR shift experiments Eu(tfc)3 (tris-[3-(trifluoromethylhydroxy-methylene)-(+)-camphorato]europium) was used. Ana-lyzing the singlet at δ = 7.35, different downfield shifts were found for the enantiomers.
Reviews on Claisen Rearrangements:
26a
Ziegler FE.
Chem. Rev.
1988,
88:
1423
26b
Frauenrath H. In
Houben Weyl: Stereoselective Synthesis
Vol. E21d:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.3301-3756
26c
Wipf P. In
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Paquette LA.
Pergamon;
New York:
1991.
p.827-873
26d
Hill RK. In
Asymmetric Synthesis
Vol. 3:
Morrison JD.
Academic Press;
New York:
1984.
p.503-572
For enantioselective Claisen rearrangements, see:
27a
Enders D.
Knopp M.
Schiffers R.
Tetrahedron: Asymmetry
1996,
7:
1847
27b
Clayden J.
Helliwell M.
McCarthy C.
Westlund N.
J. Chem. Soc., Perkin Trans. 1
2000,
3232
27c
Lemieux RM.
Devine PN.
Mechelke MF.
Meyers AI.
J. Org. Chem.
1999,
64:
3585
27d
Lemieux RM.
Meyers AI.
J. Am. Chem. Soc.
1998,
120:
5453
27e
Metz P.
Hungerhoff B.
J. Org. Chem.
1997,
62:
4442
27f
Roush WR.
Works AB.
Tetrahedron Lett.
1997,
38:
351
27g
Yoon TP.
MacMillan DWC.
J. Am. Chem. Soc.
2001,
123:
2911
The Me3Al activates the acid fluorides to start the additions/acylations. As known in the literature tertiary amines and acid fluorides do not react spontaneously:
28a
Granitza D.
Beyermann M.
Wenschuh H.
Haber H.
Carpino LA.
Truran GA.
Bienert M.
J. Chem. Soc., Chem. Commun.
1995,
2223
28b
Carpino LA.
Mansour E.-SME.
El-Faham A.
J. Org. Chem.
1993,
58:
4162
28c
Carpino LA.
Sadat-Aalaee D.
Chao H.-G.
DeSelms RH.
J. Am. Chem. Soc.
1990,
112:
9651
29a
Evans DA.
Bartoli J.
Shih TL.
J. Am. Chem. Soc.
1981,
103:
2127
29b
Richter W.
Sucrow W.
Chem. Ber.
1971,
104:
3679
30a
Johnson WS.
Bauer VJ.
Margrave JL.
Frisch MA.
Dreger LH.
Hubbard WN.
J. Am. Chem. Soc.
1961,
83:
606
30b
Vittorelli P.
Hansen H.-J.
Schmid H.
Helv. Chim. Acta
1975,
58:
1293
30c
Vance RL.
Rondan NG.
Houk KN.
Jensen F.
Borden WT.
Komornicki A.
Wimmer E.
J. Am. Chem. Soc.
1988,
110:
2314
30d
Büchi G.
Powell JE.
J. Am. Chem. Soc.
1970,
92:
3162
30e
Abelmann MM.
Funk RF.
Munger JD.
J. Am. Chem. Soc.
1982,
104:
4030
31 As an alternative, the use of C2-symmetric pyrrolidine derivatives should generate the corresponding amides with high auxiliary controlled chiral induction: He S.
Kozmin SA.
Rawal VH.
J. Am. Chem. Soc.
2000,
122:
190
32
Zhao S.
Totleben MJ.
Freeman JP.
Bacon CL.
Fox GB.
O’Driscoll E.
Foley AG.
Kelly J.
Farrell U.
Regan C.
Mizsak SA.
Szmuszkovicz J.
Bioorg. Med. Chem.
1999,
7:
1637
33
Nubbemeyer U.
Synthesis
1993,
1120