Abstract
The antioxidant effects of 1,5-anhydro-D-fructose (1,5-AF), a unique anhydrohexulose, were studied in 1,1-diphenyl-2-picrylhydrazyl (DPPH) solution, in human cells along with lipid peroxidation of low-density lipoprotein (LDL). We have confirmed that 1,5-AF scavenges DPPH radicals directly in solution and inhibits the formation of hydrogen peroxide and superoxide anion, typical reactive oxygen species (ROS), induced by phorbol myristate acetate (PMA) in a dose-dependent manner in THP-1 cells. We also observed the dose-dependent antioxidant effects of 1,5-AF on copper-mediated LDL oxidation. These findings suggest that 1,5-AF might play a role in reducing the risk of atherosclerosis and may help prevent coronary heart disease.
Key words
1,5-Anhydro-D-fructose - reactive oxygen species - low-density lipoprotein peroxidation - antioxidant
References
-
1
Halliwell B, Gutteridge J MC.
Role of free radicals and catalytic metal ions in human disease.
Methods in Enzymology.
1990;
186
1-85
-
2
Jacob R A, Burri B J.
Oxidative damage and defense.
The American Journal of Clinical Nutrition.
1996;
63
985S-90S
-
3
Witztum J L, Steinberg D.
Role of oxidized low-density lipoprotein in atherogenesis.
The Journal of Clinical Investigation.
1991;
88 (6)
1785-92
-
4
Yu S, Kenne L, Pederson M.
Alpha-1,4-glucan lyase, a new class of starch/glycogen degrading enzyme. I. Efficient purification and characterization from red seaweeds.
Biochimica et Biophysica Acta.
1993;
1156
313-20
-
5
Kametani S, Mizuno H, Shiga Y, Akanuma H.
NMR of all-carbon-13 sugars : an application in development of an analytical method for a novel natural sugar, 1,5-anhydrofructose.
Journal of Biochemistry.
1996;
119
180-5
-
6
Baute M A, Baute R, Deffieux G.
Fungal enzymic activity degrading 1,4-α-glucans to 1,5-D-anhydrofructose.
Phytochemistry.
1988;
27
3401-3
-
7
Yamanouchi T, Minoda S, Yabuuchi M, Akanuma Y, Akanuma H, Miyashita H, Akaoka I.
Plasma 1,5-anhydro-D-glucitol as new clinical marker of glycemic control in NIDDM patients.
Diabetes.
1989;
38
723-9
-
8
Kametani S, Shiga Y, Akanuma H.
Hepatic production of 1,5-anhydrofructose and 1,5-anhydroglucitol in rat by the third glycogenolytic pathway.
European Journal of Biochemistry.
1996;
242
832-8
-
9
Marsden S B.
Antioxidant determinations by the use of a stable free radical.
Nature.
1958;
181
1199-200
-
10
Yoshinaga K, Fujisue M, Abe J, Hanashiro I, Takeda Y, Muroya K, Hizukuri S.
Characterization of exo-(1,4)-alpha glucan lyase from red alga Gracilaria chorda. Activation, inactivation and the kinetic properties of the enzyme.
Biochimica et Biophysica Acta.
1999;
1472 (3)
447-54
-
11
Kogure K, Goto S, Abe K, Ohiwa C, Akasu M, Terada H.
Potent antiperoxidation activity of the bisbenzylisoquinoline alkaloid cepharanthine : the amine moiety is responsible for its pH-dependent radical scavenge activity.
Biochimica et Biophysica Acta.
1999;
1426
133-42
-
12
Pick E, Mizel D.
Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader.
Journal of Immunological Methods.
1981;
46
211-26
-
13
Itabe H, Takeshima E, Iwasaki H, Kimura J, Yoshida Y, Imanaka T, Takano T.
A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides.
The Journal of Biological Chemistry.
1994;
27
15 274-9
-
14
Suzuki M, Kametani S, Uchida K, Akanuma H.
Production of 1,5-anhydroglucitol from 1,5-anhydrofructose in erythroleukemia cells.
European Journal of Biochemistry.
1996;
240
23-9
-
15
Suzuki M, Akanuma H, Akanuma Y.
Transport of 1,5-anhydro-D-glucitol across plasma membranes in rat hepatoma cells.
Journal of Biochemistry.
1988;
104
956-9
-
16
Lynch S M, Frei B.
Reduction of copper, but not iron, by human low-density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL.
The Journal of Biological Chemistry.
1995;
270 (10)
5158-63
-
17
Taguchi T, Haruna M, Okuda J.
Effects of 1,5-anhydro-D-fructose on selected glucose-metabolizing enzymes.
Biotechnology and Applied Biochemistry.
1993;
18
275-83
-
18
Yu S, Olsen C E, Marcussen J.
Methods for the assay of 1,5-anhydro-D-fructose and α-1, 4-glucan lyase.
Carbohydrate Research.
1998;
305
73-82
-
19
Ahren B, Holst J J, Yu S.
1,5-Anhydro-D-fructose increases glucose tolerance by increasing glucagon-like peptide-1 and insulin in mice.
European Journal of Pharmacology.
2000;
397
219-25
Kazuyo Yamaji
Department of Laboratory and Molecular Medicine
Faculty of Medicine
Kagoshima University, 8-35-1
Sakuragaoka
Kagoshima City, 890-8520
Japan
Telefon: +81-99-275-5437
Fax: +81-99-275-2629
eMail: yamaji@m3.kufm.kagoshima-u.ac.jp