Subscribe to RSS
DOI: 10.1055/s-2002-20109
© Georg Thieme Verlag Stuttgart · New York
Bestimmung der myokardialen Perfusionsreserve bei KHK-Patienten mit der kontrastmittelverstärkten MRT: Ein Vergleich zwischen semiquantitativer
und quantitativer Auswertung
Evaluation of myocardial perfusion reserve in patients with CAD using Contrast-Enhanced MRI: A comparison between semiquantitative and
quantitative methods
Publication History
Publication Date:
13 February 2002 (online)
Zusammenfassung
Ziel: Vergleich zweier semiquantitativer Methoden und einer quantiativen Methode zur Bestimmung des myokardialen Blutflusses (MBF) und der myokardialen Perfusionsreserve (MPR) bei KHK-Patienten. Material und Methoden: Es wurden 9 Patienten mit Stenosen > 50 % mit einer EKG-getriggerten Saturation Recovery TurboFLASH Sequenz mit Gd-DTPA als Kontrastmittel (KM) untersucht. Die Messungen wurden sowohl unter Ruhebedingungen als auch unter pharmakologischer Belastung durch Adenosin durchgeführt. Die Steigungen der First-Pass-Kurven im Myokard und im linken Ventrikel (LV) wurden aus der mathematischen Anpassung einer Geraden bestimmt. Die MPR wurde aus den ursprünglichen Steigungen der myokardialen First-Pass-Kurven sowie aus den auf die Steigungen der LV First-Pass-Kurven normierten Steigungen berechnet. Für die Quantifizierung des MBF wurde das physiologische Modell MMID 4 verwendet. Ergebnisse: Die MPR war bei allen drei Methoden in den hochgradig ischämischen Myokardregionen (Stenosen ≥ 70 %) vermindert. Der Unterschied war mit der normalisierten Steigungsmethode und der Absolutquantifizierung signifikant. Schlussfolgerungen: Die normalisierte Steigungsmethode und die Quantifizierung sind sensitivere Methoden zur Differenzierung zwischen nicht-ischämischen und ischämischen Regionen als die nicht normalisierte Steigungsmethode.
Abstract
Objective: Comparison between two semiquantitative methods and a quantitative evaluation of myocardial blood flow (MBF) for assessment of myocardial perfusion reserve (MPR) in patients with CAD. Material and Methods: 9 patients with coronary stenoses > 50 % were examined with an ECG-gated Saturation Recovery Turbo FLASH sequence by using Gd-DTPA as contrast agent (CA). The entive measurements were performed both during rest and hyperemia induced by adenosine. The up-slopes of the signal-time S(t) curves in the myocardium and left ventricular (LV) cavity were evaluated by a linear fit. MPR was calculated from the original up-slopes of the myocardial S(t) curves and from the up-slopes, which were normalized to the up-slopes of the LV S(t) curves, respectively. For quantification of MBF values, the mathematical model MMID 4 was used and MPR was evaluated from the MBF values. Results: With all tested methods, MPR was reduced in myocardial regions subtended by arteries with stenoses ≥ 70 % compared with remote regions. With MMID 4 and the normalized up-slope method, differences between severe ischemic and remote regions were statistically significant. Conclusion: The up-slope method with normalization and quantification with MMID 4 are more sensitive methods to differentiate between remote and ischemic myocardium than the up-slope method without normalization.
Schlüsselwörter
Myokardperfusion - Magnet-Resonanz-Tomographie - KHK - Quantifizierung
Key words
Perfusion - Myocardium - Magnetic Resonance Imaging - CAD - Quantification
Literatur
- 1 Jerosch-Herold M, Wilke N, Stillman A E. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998; 25 73-84
- 2 Fritz-Hansen T, Rostrup E, Sondergaard L, Ring P B, Amtorp O, Larsson H B. Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn Reson Med. 1998; 40 922-929
- 3 Keijer J T, van Rossum A C, van Eenige M J, Bax J J, Visser F C, Teule J J, Visser C A. Magnetic resonance imaging of regional myocardial perfusion in patients with single-vessel coronary artery disease: quantitative comparison with (201)Thallium-SPECT and coronary angiography. J Magn Reson Imaging. 2000; 11 607-615
- 4 Vallee J P, Sostman H D, MacFall J R, Wheeler T, Hedlund L W, Spritzer C E, Coleman R E. MRI quantitative myocardial perfusion with compartmental analysis: a rest and stress study. Magn Reson Med. 1997; 38 981-989
- 5 Kramer U, Miller S, Helber U, Schick F, Nagele T, Brechtel K, Huppert P, Claussen C D. Variabilität MR-tomographisch bestimmbarer myokardialer Funktions- und Perfusionsparameter bei gesunden Probanden. Fortschr Röntgenstr. 2000; 172 609-614
- 6 Miller S, Huppert P E, Naegele T, Helber U, Brechtel K, Hoffmeister H M, Claussen C D. Mr-tomographische Untersuchung myokardialer Funktion und Perfusion nach Myokardinfarkt. Fortschr Rontgenstr.. 1997; 167 399-405
- 7 Nagele T, Miller S, Klose U, Brechtel K, Hahn U, Schick F, Stauder N, Nusslin F. Numerische Messparameteroptimierung für die EKG-getriggerte MR Snapshot-FLASH Myokardperfusionsuntersuchungen. Fortschr Röntgenstr. 1999; 170 89-93
- 8 Al Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, KIein C, Klimek W, Oswald H, Fleck E. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000; 101 1379-1383
- 9 Matheijssen N A, Louwerenburg H W, van Rugge F P, Arens R P, Kauer B, de Roos A, van der Wall E E. Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole SestaMIBI SPECT for detection of perfusion abnormalities in patients with one-vessel coronary artery disease: assessment by quantitative model fitting. Magn Reson Med. 1996; 35 221-228
- 10 Penzkofer H, Wintersperger B J, Knez A, Weber J, Reiser M. Assessment of myocardial perfusion using multisection first-pass MRI and color-coded parameter maps: a comparison to 99mTc Sesta MIBI SPECT and systolic myocardial wall thickening analysis. Magn Reson Imaging. 1999; 17 161-170
- 11 Wilke N, Kroll K, Merkle H, Wang Y, Ishibashi Y, Xu Y, Zhang J, Jerosch-Herold M, Muhler A, Stillman A E. et al . Regional myocardial blood volume and flow: first-pass MR imaging with polylysine-Gd-DTPA. J Magn Reson Imaging. 1995; 5 227-237
- 12 Penzkofer H, Wintersperger B, Smekal A, Stehling M K, Knez A, Weber J, Reiser M. Qualitative und quantitative Bestimmung der regionalen Myokardperfusion mittels Magnetresonanztomographie. Radiologe. 1997; 37 372-377
- 13 Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen B V, Stillman A E, Ugurbil K, McDonald K, Wilson R F. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology. 1997; 204 373-384
- 14 Jerosch-Herold M, Wilke N. MR first pass imaging: quantitative assessment of transmural perfusion and collateral flow. Int J Card Imaging. 1997; 13 205-218
- 15 Diesbourg L D, Prato F S, Wisenberg G, Drost D J, Marshall T P, Carroll S E, O'Neill B. Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med. 1992; 23 239-253
- 16 Kroll K, Wilke N, Jerosch-Herold M, Wang Y, Zhang Y, Bache R J, Bassingthwaighte J B. Modeling regional myocardial flows from residue functions of an intravascular indicator. Am J Physiol. 1996; 271 H1643-1655
- 17 Jerosch-Herold M, Wilke N, Wang Y, Gong G R, Mansoor A M, Huang H, Gurchumelidze S, Stillman A E. Direct comparison of an intravascular and an extracellular contrast agent for quantification of myocardial perfusion. Cardiac MRI Group. Int J Card Imaging. 1999; 15 453-464
- 18 King R B, Bassingthwaighte J B, Hales J R, Rowell L B. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ Res. 1985; 57 285-295
- 19 Crysta1 G J, Downey H F, Bashour F A. Small vessel and total coronary blood volume during intracoronary adenosine. Am J Physiol. 1981; 241 H194-201
- 20 Chan I S, Goldstein A A, Bassingthwaighte J B. SENSOP: a derivative-free solver for nonlinear least squares with sensitivity scaling. Ann Biomed Eng. 1993; 21 621-631
- 21 Di Carli M, Czernin J, Hoh C K, Gerbaudo V H, Brunken R C, Huang S C, Phelps M E, Schelbert H R. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation. 1995; 91 1944-1951
- 22 Wilson R F, Marcus M L, White C W. Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation. 1987; 75 723-732
- 23 Keijer J T, van Rossum A C, van Eenige M J, Karreman A J, Hofman M B, Valk J, Visser C A. Semiquantitation of regional myocardial blood flow in normal human subjects by first-pass magnetic resonance imaging. Am Heart J. 1995; 130 893-901
- 24 Schulz R, Heusch G. Myocardial hibernation - adaptation to ischemia. Z Kardiol. 2000; 89 101-108
- 25 Uren N G, Melin J A, De Bruyne B, Wijns W, Baudhuin T, Camici P G. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994; 330 1782-1788
- 26 Rosen S D, Uren N G, Kaski J C, Tousoulis D, Davies G J, Camici P G. Coronary vasodilator reserve, pain perception, and sex in patients with syndrome X. Circulation. 1994; 90 50-60
- 27 Herrero P, Hartman J J, Senneff M J, Bergmann S R. Effects of time discrepancies between input and myocardial time-activity curves on estimates of regional myocardial perfusion with PET. J Nucl Med. 1994; 35 558-566
- 28 Nagamachi S, Czernin J, Kim A S, Sun K T, Bottcher M, Phelps M E, Schelbert H R. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med. 1996; 37 1626-1631
- 29 Bianco J A, Alpert J S. Physiologic and clinical significance of myocardial blood flow quantitation: what is expected from these measurements in the clinical ward and in the physiology laboratory?. Cardiology.. 1997; 88 116-126
- 30 Cullen J H, Horsfield M A, Reek C R, Cherryman G R, Barnett D B, Samani N J. A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol. 1999; 33 1386-1394
- 31 Schreiber W G, Schmitt M, Kalden P, Horstick G, Gumbrich T, Petersen S, Mohrs O, Kreitner K F, Voigtlander T, Thelen M. MR-Perfusionsbildgebung des Herzens mit TrueFISP. MR-Perfusionsbildgebung des Herzens mit TrueFISP. Fortschr Röntgenstr. 2001; 173 205-210
- 32 Calamante F, Gadian D G, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med. 2000; 44 466-473
- 33 Schmitt M, Schreiber W G, Viallon M, Thelen M. Influence of dispersion on quantification of myocardial perfusion and perfusion reserve with first pass MRI: Simulations using the mathematical model MMID4. In “Proc., Proc Int Soc Magn Reson Med 2001, Glasgow, 2001” 2001: 185
- 34 Vanoverschelde J L, Wijns W, Depre C, Essamri B, Heyndrickx G R, Borgers M, Bol A, Melin J A. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993; 87 1513-1523
- 35 Shelton M E, Senneff M J, Ludbrook P A, Sobel B E, Bergmann S R. Concordance of nutritive myocardial perfusion reserve and flow velocity reserve in conductance vessels in patients with chest pain with angiographically normal coronary arteries. J Nucl Med. 1993; 34 717-722
Dipl.-Phys. Melanie Schmitt
Klinik und Poliklinik für Radiologie
Johannes Gutenberg-Universität
Langenbeckstr. 1
55131 Mainz
Phone: 06131/17-6882
Fax: 06131/17-475285
Email: schmitt@radiologie.klinik.uni-mainz.de