Zusammenfassung
Ziel: Vergleich zweier semiquantitativer Methoden und einer quantiativen Methode zur Bestimmung
des myokardialen Blutflusses (MBF) und der myokardialen Perfusionsreserve (MPR) bei
KHK-Patienten. Material und Methoden: Es wurden 9 Patienten mit Stenosen > 50 % mit einer EKG-getriggerten Saturation Recovery
TurboFLASH Sequenz mit Gd-DTPA als Kontrastmittel (KM) untersucht. Die Messungen wurden
sowohl unter Ruhebedingungen als auch unter pharmakologischer Belastung durch Adenosin
durchgeführt. Die Steigungen der First-Pass-Kurven im Myokard und im linken Ventrikel
(LV) wurden aus der mathematischen Anpassung einer Geraden bestimmt. Die MPR wurde
aus den ursprünglichen Steigungen der myokardialen First-Pass-Kurven sowie aus den
auf die Steigungen der LV First-Pass-Kurven normierten Steigungen berechnet. Für die
Quantifizierung des MBF wurde das physiologische Modell MMID 4 verwendet. Ergebnisse: Die MPR war bei allen drei Methoden in den hochgradig ischämischen Myokardregionen
(Stenosen ≥ 70 %) vermindert. Der Unterschied war mit der normalisierten Steigungsmethode
und der Absolutquantifizierung signifikant. Schlussfolgerungen: Die normalisierte Steigungsmethode und die Quantifizierung sind sensitivere Methoden
zur Differenzierung zwischen nicht-ischämischen und ischämischen Regionen als die
nicht normalisierte Steigungsmethode.
Abstract
Objective: Comparison between two semiquantitative methods and a quantitative evaluation of
myocardial blood flow (MBF) for assessment of myocardial perfusion reserve (MPR) in
patients with CAD. Material and Methods: 9 patients with coronary stenoses > 50 % were examined with an ECG-gated Saturation
Recovery Turbo FLASH sequence by using Gd-DTPA as contrast agent (CA). The entive
measurements were performed both during rest and hyperemia induced by adenosine.
The up-slopes of the signal-time S(t) curves in the myocardium and left ventricular
(LV) cavity were evaluated by a linear fit. MPR was calculated from the original up-slopes
of the myocardial S(t) curves and from the up-slopes, which were normalized to the
up-slopes of the LV S(t) curves, respectively. For quantification of MBF values, the
mathematical model MMID 4 was used and MPR was evaluated from the MBF values. Results: With all tested methods, MPR was reduced in myocardial regions subtended by arteries
with stenoses ≥ 70 % compared with remote regions. With MMID 4 and the normalized
up-slope method, differences between severe ischemic and remote regions were statistically
significant. Conclusion: The up-slope method with normalization and quantification with MMID 4 are more sensitive
methods to differentiate between remote and ischemic myocardium than the up-slope
method without normalization.
Schlüsselwörter
Myokardperfusion - Magnet-Resonanz-Tomographie - KHK - Quantifizierung
Key words
Perfusion - Myocardium - Magnetic Resonance Imaging - CAD - Quantification
Literatur
1
Jerosch-Herold M, Wilke N, Stillman A E.
Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi
function model for constrained deconvolution.
Med Phys.
1998;
25
73-84
2
Fritz-Hansen T, Rostrup E, Sondergaard L, Ring P B, Amtorp O, Larsson H B.
Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation
assessed by MRI.
Magn Reson Med.
1998;
40
922-929
3
Keijer J T, van Rossum A C, van Eenige M J, Bax J J, Visser F C, Teule J J, Visser C A.
Magnetic resonance imaging of regional myocardial perfusion in patients with single-vessel
coronary artery disease: quantitative comparison with (201)Thallium-SPECT and coronary
angiography.
J Magn Reson Imaging.
2000;
11
607-615
4
Vallee J P, Sostman H D, MacFall J R, Wheeler T, Hedlund L W, Spritzer C E, Coleman R E.
MRI quantitative myocardial perfusion with compartmental analysis: a rest and stress
study.
Magn Reson Med.
1997;
38
981-989
5
Kramer U, Miller S, Helber U, Schick F, Nagele T, Brechtel K, Huppert P, Claussen C D.
Variabilität MR-tomographisch bestimmbarer myokardialer Funktions- und Perfusionsparameter
bei gesunden Probanden.
Fortschr Röntgenstr.
2000;
172
609-614
6
Miller S, Huppert P E, Naegele T, Helber U, Brechtel K, Hoffmeister H M, Claussen C D.
Mr-tomographische Untersuchung myokardialer Funktion und Perfusion nach Myokardinfarkt.
Fortschr Rontgenstr..
1997;
167
399-405
7
Nagele T, Miller S, Klose U, Brechtel K, Hahn U, Schick F, Stauder N, Nusslin F.
Numerische Messparameteroptimierung für die EKG-getriggerte MR Snapshot-FLASH Myokardperfusionsuntersuchungen.
Fortschr Röntgenstr.
1999;
170
89-93
8
Al Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, KIein C, Klimek W, Oswald H,
Fleck E.
Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular
magnetic resonance.
Circulation.
2000;
101
1379-1383
9
Matheijssen N A, Louwerenburg H W, van Rugge F P, Arens R P, Kauer B, de Roos A, van
der Wall E E.
Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole
SestaMIBI SPECT for detection of perfusion abnormalities in patients with one-vessel
coronary artery disease: assessment by quantitative model fitting.
Magn Reson Med.
1996;
35
221-228
10
Penzkofer H, Wintersperger B J, Knez A, Weber J, Reiser M.
Assessment of myocardial perfusion using multisection first-pass MRI and color-coded
parameter maps: a comparison to 99mTc Sesta MIBI SPECT and systolic myocardial wall
thickening analysis.
Magn Reson Imaging.
1999;
17
161-170
11
Wilke N, Kroll K, Merkle H, Wang Y, Ishibashi Y, Xu Y, Zhang J, Jerosch-Herold M,
Muhler A, Stillman A E. et al .
Regional myocardial blood volume and flow: first-pass MR imaging with polylysine-Gd-DTPA.
J Magn Reson Imaging.
1995;
5
227-237
12
Penzkofer H, Wintersperger B, Smekal A, Stehling M K, Knez A, Weber J, Reiser M.
Qualitative und quantitative Bestimmung der regionalen Myokardperfusion mittels Magnetresonanztomographie.
Radiologe.
1997;
37
372-377
13
Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen B V, Stillman A E, Ugurbil K,
McDonald K, Wilson R F.
Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass
MR imaging.
Radiology.
1997;
204
373-384
14
Jerosch-Herold M, Wilke N.
MR first pass imaging: quantitative assessment of transmural perfusion and collateral
flow.
Int J Card Imaging.
1997;
13
205-218
15
Diesbourg L D, Prato F S, Wisenberg G, Drost D J, Marshall T P, Carroll S E, O'Neill B.
Quantification of myocardial blood flow and extracellular volumes using a bolus injection
of Gd-DTPA: kinetic modeling in canine ischemic disease.
Magn Reson Med.
1992;
23
239-253
16
Kroll K, Wilke N, Jerosch-Herold M, Wang Y, Zhang Y, Bache R J, Bassingthwaighte J B.
Modeling regional myocardial flows from residue functions of an intravascular indicator.
Am J Physiol.
1996;
271
H1643-1655
17
Jerosch-Herold M, Wilke N, Wang Y, Gong G R, Mansoor A M, Huang H, Gurchumelidze S,
Stillman A E.
Direct comparison of an intravascular and an extracellular contrast agent for quantification
of myocardial perfusion. Cardiac MRI Group.
Int J Card Imaging.
1999;
15
453-464
18
King R B, Bassingthwaighte J B, Hales J R, Rowell L B.
Stability of heterogeneity of myocardial blood flow in normal awake baboons.
Circ Res.
1985;
57
285-295
19
Crysta1 G J, Downey H F, Bashour F A.
Small vessel and total coronary blood volume during intracoronary adenosine.
Am J Physiol.
1981;
241
H194-201
20
Chan I S, Goldstein A A, Bassingthwaighte J B.
SENSOP: a derivative-free solver for nonlinear least squares with sensitivity scaling.
Ann Biomed Eng.
1993;
21
621-631
21
Di Carli M, Czernin J, Hoh C K, Gerbaudo V H, Brunken R C, Huang S C, Phelps M E,
Schelbert H R.
Relation among stenosis severity, myocardial blood flow, and flow reserve in patients
with coronary artery disease.
Circulation.
1995;
91
1944-1951
22
Wilson R F, Marcus M L, White C W.
Prediction of the physiologic significance of coronary arterial lesions by quantitative
lesion geometry in patients with limited coronary artery disease.
Circulation.
1987;
75
723-732
23
Keijer J T, van Rossum A C, van Eenige M J, Karreman A J, Hofman M B, Valk J, Visser C A.
Semiquantitation of regional myocardial blood flow in normal human subjects by first-pass
magnetic resonance imaging.
Am Heart J.
1995;
130
893-901
24
Schulz R, Heusch G.
Myocardial hibernation - adaptation to ischemia.
Z Kardiol.
2000;
89
101-108
25
Uren N G, Melin J A, De Bruyne B, Wijns W, Baudhuin T, Camici P G.
Relation between myocardial blood flow and the severity of coronary-artery stenosis.
N Engl J Med.
1994;
330
1782-1788
26
Rosen S D, Uren N G, Kaski J C, Tousoulis D, Davies G J, Camici P G.
Coronary vasodilator reserve, pain perception, and sex in patients with syndrome X.
Circulation.
1994;
90
50-60
27
Herrero P, Hartman J J, Senneff M J, Bergmann S R.
Effects of time discrepancies between input and myocardial time-activity curves on
estimates of regional myocardial perfusion with PET.
J Nucl Med.
1994;
35
558-566
28
Nagamachi S, Czernin J, Kim A S, Sun K T, Bottcher M, Phelps M E, Schelbert H R.
Reproducibility of measurements of regional resting and hyperemic myocardial blood
flow assessed with PET.
J Nucl Med.
1996;
37
1626-1631
29
Bianco J A, Alpert J S.
Physiologic and clinical significance of myocardial blood flow quantitation: what
is expected from these measurements in the clinical ward and in the physiology laboratory?.
Cardiology..
1997;
88
116-126
30
Cullen J H, Horsfield M A, Reek C R, Cherryman G R, Barnett D B, Samani N J.
A myocardial perfusion reserve index in humans using first-pass contrast-enhanced
magnetic resonance imaging.
J Am Coll Cardiol.
1999;
33
1386-1394
31
Schreiber W G, Schmitt M, Kalden P, Horstick G, Gumbrich T, Petersen S, Mohrs O, Kreitner K F,
Voigtlander T, Thelen M.
MR-Perfusionsbildgebung des Herzens mit TrueFISP. MR-Perfusionsbildgebung des Herzens
mit TrueFISP.
Fortschr Röntgenstr.
2001;
173
205-210
32
Calamante F, Gadian D G, Connelly A.
Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using
singular value decomposition.
Magn Reson Med.
2000;
44
466-473
33 Schmitt M, Schreiber W G, Viallon M, Thelen M. Influence of dispersion on quantification
of myocardial perfusion and perfusion reserve with first pass MRI: Simulations using
the mathematical model MMID4. In “Proc., Proc Int Soc Magn Reson Med 2001, Glasgow,
2001” 2001: 185
34
Vanoverschelde J L, Wijns W, Depre C, Essamri B, Heyndrickx G R, Borgers M, Bol A,
Melin J A.
Mechanisms of chronic regional postischemic dysfunction in humans. New insights from
the study of noninfarcted collateral-dependent myocardium.
Circulation.
1993;
87
1513-1523
35
Shelton M E, Senneff M J, Ludbrook P A, Sobel B E, Bergmann S R.
Concordance of nutritive myocardial perfusion reserve and flow velocity reserve in
conductance vessels in patients with chest pain with angiographically normal coronary
arteries.
J Nucl Med.
1993;
34
717-722
Dipl.-Phys. Melanie Schmitt
Klinik und Poliklinik für Radiologie Johannes Gutenberg-Universität
Langenbeckstr. 1
55131 Mainz
Phone: 06131/17-6882
Fax: 06131/17-475285
Email: schmitt@radiologie.klinik.uni-mainz.de