Das Immunsystem, wie wir es beim Menschen kennen, setzt sich aus zwei eng miteinander verzahnten Teilen zusammen: der angeborenen, „unspezifischen” Immunabwehr und der adaptiven, „spezifischen” Immunität. Elemente der angeborenen Immunabwehr haben sich bereits sehr früh in der Evolution des Tierreichs ausgebildet. Adaptive Immunabwehr hingegen entstand innerhalb eines relativ kurzen Zeitraums ausschließlich bei Wirbeltieren mit Kiefer. Neue Daten vor allem aus Genomsequenzierprojekten erlauben nun erste Rückschlüsse auf die Ereignisse, die zur Ausbildung adaptiver Immunität führten.
Abstract
The human immune system is composed of two closely cooperating entities: innate, “unspecific” immune defense on one hand and adaptive, “specific” immunity on the other. Innate immune defense mechanisms were already developed very early in the evolution of the animal kingdom. By contrast, adaptive immunity exclusively evolved in jawed vertebrates within a surprisingly short time span. New data especially from genome sequencing projects now allow first glimpses on those events that resulted in the formation of adaptive immunity.
Schlüsselwörter
MHC - RAG - Immunsystem - Evolution - Genom
Key words
MHC - RAG - Immune system - Evolution - Genome
Literatur
1
Magor B G, De Tomaso A, Rinkevich B, Weissman I L.
Allorecognition in colonial tunicates: protection against predatory cell lineages?.
Immunol Rev..
1999;
167
69-79
2 Boman HG F I, von Hofstein P, Kockum K, Lee J -Y, Xanthopoulos K G, Bennich H, Engstrom Å, Merrifield B R, Andreu D. Antibacterial immune proteins in insects - a review of some current perspectives. Berlin: Springer Verlag 1986
4
Sun SC L I, Boman H G, Faye I, Schmidt O.
Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily.
Science.
1990;
250
1729-1732
8
Oettinger M A, Schatz D G, Gorka C, Baltimore D.
RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination.
Science.
1990;
248
(4962)
1517-1523
9
Agrawal A, Eastman Q M, Schatz D G.
Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system.
Nature.
1998;
394
(6695)
744-751
10
Reinherz E L, Tan K, Tang L, Kern P, Liu J -H, Xiong Y. et al .
The crystal structure of a T cell receptor in complex with peptide and MHC class II.
Science.
1999;
286
1913-1921
12
Srivastava P, Menoret A, Basu S, Binder R J, McQuade K L.
Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world.
Immunity.
1998;
8
657-665
14
Enns C A.
Pumping iron: the strange partnership of the hemochromatosis protein, a class I MHC homolog, with the transferrin receptor.
Traffic.
2001;
2
(3)
167-174
19
Kaufman J, Milne S, Gobel T W, Walker B A, Jacob J P, Auffray C. et al .
The chicken B locus is a minimal essential major histocompatibility complex.
Nature.
1999;
401
(6756)
923-925
20
Lindahl K F, Byers D E, Dabhi V M, Hovik R, Jones E P, Smith G P. et al .
H2-M3, a full-service class Ib histocompatibility antigen.
Annu Rev Immunol.
1997;
15
851-879
23
Ohta Y, Okamura K, McKinney E C, Bartl S, Hashimoto K, Flajnik M F.
Primitive synteny of vertebrate major histocompatibility complex class I and class II genes.
Proc Natl Acad Sci USA.
2000;
97
(9)
4712-4717