References
<A NAME="RG34301ST-1A">1a</A>
Kulinkovich OG.
Sviridov SV.
Vasilevskii DA.
Pritytskaya TS.
Zh. Org. Khim.
1989,
25:
2244
<A NAME="RG34301ST-1B">1b</A>
Kulinkovich OG.
Sviridov SV.
Vasilevskii DA.
Synthesis
1991,
234
<A NAME="RG34301ST-2A">2a</A>
Kulinkovich OG.
de Meijere A.
Chem. Rev.
2000,
100:
2789
<A NAME="RG34301ST-2B">2b</A>
Sato F.
Urabe H.
Okamoto S.
Chem. Rev.
2000,
100:
2835
<A NAME="RG34301ST-3A">3a</A>
Denis JM.
Conia JM.
Tetrahedron Lett.
1972,
4593
<A NAME="RG34301ST-3B">3b</A>
Le Goaller R.
Pierre J.-L.
Bull. Soc. Chim. Fr.
1973,
1531
<A NAME="RG34301ST-3C">3c</A>
Rubotton GM.
Lopes MI.
J. Org. Chem.
1973,
38:
2097
<A NAME="RG34301ST-4A">4a</A>
Conia JM.
Pure Appl. Chem.
1975,
43:
317
<A NAME="RG34301ST-4B">4b</A>
Ryu I.
Murai S. In Houben-Weyl
4th ed., Vol. E 17:
de Meijere A.
Thieme;
Stuttgart:
1996.
p.1985
<A NAME="RG34301ST-4C">4c</A>
Kuwajima I.
Nakamura E.
Top. Curr. Chem.
1990,
155:
3
<A NAME="RG34301ST-5A">5a</A>
Wasserman HH.
Clagett DC.
J. Am. Chem. Soc.
1966,
88:
5368
<A NAME="RG34301ST-5B">5b</A>
Wasserman HH.
Cochoy RE.
Baird MS.
J. Am. Chem. Soc.
1969,
91:
2375
<A NAME="RG34301ST-6A">6a</A>
Wasserman HH.
Clark GM.
Turley PC.
Top. Curr. Chem.
1974,
47:
73
<A NAME="RG34301ST-6B">6b</A>
Turro NJ.
Cyclopropanones
1969,
25
<A NAME="RG34301ST-6C">6c</A>
Salaün J.
Chem. Rev.
1983,
83:
619
<A NAME="RG34301ST-6D">6d</A>
Salaün J.
Top. Curr. Chem.
1988,
144:
1
<A NAME="RG34301ST-7">7</A>
Gibson DH.
De Puy CH.
Chem. Rev.
1974,
74:
605
<A NAME="RG34301ST-8A">8a</A>
Werstiuk NH.
Tetrahedron
1983,
39:
205
<A NAME="RG34301ST-8B">8b</A>
Grimmis MT.
Nantermet PG.
Org. Prep. Proced. Int.
1993,
25:
43
<A NAME="RG34301ST-8C">8c</A>
Kulinkovich OG.
Pol. J. Chem.
1997,
71:
849
<A NAME="RG34301ST-9A">9a</A>
Roberts JD.
Chambers VC.
J. Am. Chem. Soc.
1951,
73:
5034
<A NAME="RG34301ST-9B">9b</A>
De Puy CH.
Schnack LG.
Hausser JW.
J. Am. Chem. Soc.
1966,
88:
3343
For reviews see:
<A NAME="RG34301ST-10A">10a</A>
Jendralla H. In Houben-Weyl
4th ed., Vol. E 19:
de Meijere A.
Thieme;
Stuttgart:
1996.
p.2313
<A NAME="RG34301ST-10B">10b</A>
Schollkopf U.
Angew. Chem., Int. Ed. Engl.
1968,
7:
588
<A NAME="RG34301ST-10C">10c</A>
Friedrich EC. In The Chemistry of the Cyclopropyl Group
Rappoport Z.
Wiley;
London:
1987.
Chap. 11.
p.633
<A NAME="RG34301ST-10D">10d</A>
Salaün J. In The Chemistry of the Cyclopropyl Group
Rappoport Z.
Wiley;
London:
1987.
Chap. 13.
p.809
<A NAME="RG34301ST-10E">10e</A>
Salaün J.
J. Org. Chem.
1976,
41:
1237 ; and references cited therein
<A NAME="RG34301ST-11">11</A> Momose and co-workers have recently found that treatment of tertiary cyclopropyl
silyl ethers with diethylaminosulfur trifluoride give allylic fluorides in moderate
to high yield:
Kirihara M.
Kambayashi T.
Momose T.
Chem. Commun.
1996,
1103
<A NAME="RG34301ST-12">12</A>
Ollivier J.
Dorizon P.
Piras PP.
de Meijere A.
Salaün J.
Inorg. Chim. Acta.
1994,
222:
37
<A NAME="RG34301ST-13">13</A> We have obtained this finding quite accidentally. A search in the literature
revealed that magnesium halides have been earlier proposed by Gore and co-workers
as an efficient reagent for nucleophilic displacement of p-tosyloxy or mesyloxy groups by halogen atoms:
Place P.
Roumestanant M.-L.
Gore J.
Bull. Soc. Chim. Fr.
1976,
169
<A NAME="RG34301ST-14">14</A>
Typical Procedure:
A solution of 1-hexylcyclopropyl methanesulfonate 2a 7.65 g (35 mmol) in 10 mL Et2O was added slowly into MgBr2 (52 mmol) solution (prepared from 1.26 g magnesium turnings and 4.5 mL 1,2-dibromoethane
in 30 mL Et2O) at r.t. When the reaction was completed (control by TLC), water was added to the
mixture until precipitate was dissolved. Water layer was extracted with Et2O, washed with 5% NaCl solution and dried over Na2SO4. After evaporation of the solvent, the resulting crude product was purified by column
chromatography, using petroleum ether eluent and silica gel (Merck 70-230), yielding
6.82 g (95%) of pure allyl halide 3.
<A NAME="RG34301ST-15A">15a</A>
Kulinkovich OG.
Sviridov SV.
Vasilevski DA.
Savchenko AI.
Pritytskaya TS.
Zh. Org. Khim.
1991,
27:
294
<A NAME="RG34301ST-15B">15b</A>
Epstein OL.
Savchenko AI.
Kulinkovich OG.
Tetrahedron Letters
1999,
40:
5935
<A NAME="RG34301ST-16A">16a</A>
Kasatkin A.
Sato F.
Tetrahedron Lett.
1995,
36:
6079
<A NAME="RG34301ST-16B">16b</A>
Lee J.
Kim H.
Cha K.
J. Am. Chem. Soc.
1996,
118:
4198
<A NAME="RG34301ST-16C">16c</A>
Lee J.
Kim H.
Bae JG.
Cha K.
J. Org Chem.
1996,
61:
4878
<A NAME="RG34301ST-16D">16d</A>
Lee J.
Kang CH.
Kim H.
Cha K.
J. Am. Chem. Soc.
1996,
118:
291
<A NAME="RG34301ST-17">17</A>
Entry 11: 1H NMR (200 MHz, CDCl3) δ = 0.60-0.74 (m, 1 H), 0.80-0.92 (m, 1 H), 1.06-1.22 (m, 2 H), 1.74 (d, J = 6.5 Hz, 3 H), 2.09 (dd, J
1
= 15 Hz, J
2
= 8 Hz, 1 H), 2.45 (s, 3 H), 2.49 (dd, J
1
= 15 Hz, J
2
= 6 Hz, 1 H), 4.28-4.50 (m, 1 H), 7.35 (d, J = 8 Hz, 2 H), 7.77 (d, J = 8 Hz, 2 H). Entry 19: 1H NMR (200 MHz, CDCl3) δ = 0.92 (t, J = 6 Hz, 1 H), 1.04-1.40 (m, 2 H), 1.58 (dd, J
1
= 12 Hz, J
2
= 8 Hz, 1 H), 1.66-2.06 (m, 3 H), 2.10-2.44 (m, 2 H), 3.02 (s, 3 H).
<A NAME="RG34301ST-18">18</A>
Entry 11: 1H NMR (200 MHz, CDCl3): δ = 1.76 (d, J = 6.5 Hz, 3 H), 2.61-2.89 (m, 2 H), 4.01 (s, 2 H), 4.17-4.28 (m, 1 H), 5.08 (d, J = 1 Hz, 1 H), 5.32 (s, 1 H). n
D
20 = 1.5235. Entry 19: 1H NMR (200 MHz, CDCl3): δ = 1.86-2.06 (m, 2 H), 2.28-2.50 (m, 4 H), 4.08 (s, 1.8 H), 4.88-4.95 (m, 0.1
H), 5.07 (s, 0.1 H), 5.30 (s, 0.1 H), 5.78 (s, 0.9 H).