References
<A NAME="RG34501ST-1">1</A>
Neunhoeffer H. In
Comprehensive Heterocyclic Chemistry II
Vol. 6:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon Press;
Oxford:
1996.
p.507
<A NAME="RG34501ST-2A">2a</A>
Pozharskii AF.
Soldatenkov AT.
Katritzky AR.
Heterocycles in Life and Society
Wiley;
Chichester:
1997.
<A NAME="RG34501ST-2B">2b</A>
Drew MGB.
Guillaneux D.
Hudson MJ.
Iveson PB.
Russell ML.
Madic C.
Inorg. Chem. Commun.
2001,
4:
12
<A NAME="RG34501ST-2C">2c</A>
Drew MGB.
Guillaneux D.
Hudson MJ.
Iveson PB.
Madic C.
Inorg. Chem. Commun.
2001,
4:
462
<A NAME="RG34501ST-3A">3a</A>
Boger DL.
Tetrahedron
1983,
39:
2869
<A NAME="RG34501ST-3B">3b</A>
Taylor EC.
Pont JL.
Warner JC.
Tetrahedron
1987,
43:
5159 and references cited therein
<A NAME="RG34501ST-3C">3c</A>
Rykowski A.
Branowska D.
Kielak J.
Tetrahedron Lett.
2000,
41:
3657
<A NAME="RG34501ST-3D">3d</A>
Sauer J.
Heldmann DK.
Pabst GR.
Eur. J. Org. Chem.
1999,
313 and references cited therein
<A NAME="RG34501ST-4A">4a</A>
Keromnes A.
Vignane P.
Rouchette J.
Guillaneux D.
SFC 2000
Société Française de Chimie;
Rennes, France:
2000.
p.10-19
<A NAME="RG34501ST-4B">4b</A>
Dognon JP. inventors; CLEFS CEA- No 42-automne.
<A NAME="RG34501ST-5A">5a</A>
Paudler WW.
Barton JM.
J. Org. Chem.
1966,
31:
1720
<A NAME="RG34501ST-5B">5b</A>
Rykowski A.
van der Plas HC.
J. Org. Chem.
1980,
45:
881
<A NAME="RG34501ST-5C">5c</A>
Neunhoeffer H.
Liebigs Ann. Chem.
1972,
760
<A NAME="RG34501ST-5D">5d</A>
Neunhoeffer H.
Weischedel F.
Liebigs Ann. Chem.
1971,
16
<A NAME="RG34501ST-6A">6a</A>
Hundsdorf T.
Neunhoeffer H.
Synthesis
2001,
1800
<A NAME="RG34501ST-6B">6b</A>
Plé N.
Turck A.
Queguiner G.
Glassl B.
Neunhoeffer H.
Liebigs Ann. Chem.
1993,
583
<A NAME="RG34501ST-6C">6c</A>
Glassl B.
Sinks U.
Neunhoeffer H.
Heterocyclic Commun.
1996,
513
<A NAME="RG34501ST-7A">7a</A>
Benson SC.
Gross JL.
Snyder JK.
J. Org. Chem.
1990,
55:
3257 ; and references cited therein
<A NAME="RG34501ST-7B">7b</A>
Rykowski A.
Wolinska E.
van der Plas HC.
J. Heterocyclic Chem.
2000,
37:
879
<A NAME="RG34501ST-8A">8a</A>
Taylor EC.
Macor JE.
Tetrahedron Lett.
1986,
27:
431
<A NAME="RG34501ST-8B">8b</A>
Taylor EC.
Macor JE.
Tetrahedron Lett.
1985,
26:
2419
<A NAME="RG34501ST-8C">8c</A>
Taylor EC.
Pont JL.
Tetrahedron Lett.
1987,
28:
379
<A NAME="RG34501ST-8D">8d</A>
Taylor EC.
Macor JE.
Tetrahedron Lett.
1986,
27:
2107
<A NAME="RG34501ST-8E">8e</A>
Konno S.
Yokoyama M.
Kaite A.
Yamatsuta I.
Ogawa S.
Mizugaki M.
Yamanaka H.
Chem. Pharm. Bull.
1982,
30:
152
<A NAME="RG34501ST-9">9</A>
Paudler WW.
Chem IK.
J. Heterocyclic Chem.
1970,
7:
767
<A NAME="RG34501ST-10A">10a</A>
Liebeskind LS.
Srogl J.
J. Am. Chem. Soc.
2000,
122:
11260
<A NAME="RG34501ST-10B">10b</A>
During the very late stages of the production of this letter, Liebeskind and Srogl
have disclosed to the authors a prior art manuscript describing a general heteroaromatic
thioether-boronic acid cross-coupling.
<A NAME="RG34501ST-11A">11a</A>
Savarin C.
Srogl J.
Liebeskind LS.
Org. Lett.
2001,
3:
91
<A NAME="RG34501ST-11B">11b</A>
Savarin C.
Liebeskind LS.
Org. Lett.
2001,
3:
2149
<A NAME="RG34501ST-12">12</A>
The related nickel- and palladium-catalyzed cross coupling of Grignard and benzylzinc
reagents with methylthio-substituted heterocycles is known.
[16]
<A NAME="RG34501ST-13">13</A>
Experimental Procedure: The following procedure for the synthesis of 3-(p-methoxyphenyl)-1,2,4-triazine is representative. To a mixture of 3-methylthio-1,2,4-triazine
1 (50 mg, 0.393 mmol, 1.0 equiv), CuMeSal (186 mg, 0.867 mmol, 2.2 equiv), p-methoxyphenylboronic acid (132 mg, 0.867 mmol, 2.2 equiv) in dry THF (3 mL) under
argon, was added Pd(PPh3)4 (23 mg, 0.02 mmol, 5% mol). The reaction was stirred for 5 h at 50 °C. The mixture
was quenched with a Na2CO3 solution (2 N) and extracted with dichloromethane. The combined organic phases were
washed with a Na2CO3 solution (2 N) and water, dried over MgSO4 and concentrated in vacuo. After purification by column chromatography on silica
gel (petroleum ether-ethyl acetate, 70:30), the desired 3-(p-methoxyphenyl)-1.2.4-triazine 2 was obtained as yellow powder (63 mg, 85%); mp 90-91 °C; (M + H)+ (IS) 188; 1H NMR (250 MHz, CDCl3) δ 9.08 (d, 1 Htriazine, J = 2.1 Hz); 8.61 (d, 1 Htriazine, J = 2.1 Hz); 8.51 (d, 2 HAr, J = 7 Hz); 7.03 (d, 2 HAr, J = 7Hz); 3.90 (s, 3 HOMe); 13C NMR (62.5 MHz, CDCl3) δ 164.3, 163.1, 149.0, 147.4, 130.0, 127.6, 114.7, 55.8. Spectroscopic data for
3: tan solid; mp 75 °C; (M + H)+ (IS) 148; 1H NMR (250 MHz, CDCl3) δ 9.09 (d, 1 Htriazine, J = 2.5 Hz), 8.62 (d, 1 Htriazine, J = 2.5 Hz), 7.72 (dd, 1 Hfuryl, J = 0.9, 1.6 Hz), 7.54 (dd, 1 Hfuryl, J = 0.9, 3.5 Hz), 6.65 (dd, 1 Hfuryl, J = 1.6, 3.5 Hz); 13C NMR (62.5 MHz, CDCl3) δ 158.1, 149.5, 148.8, 147.2, 146.6, 115.7, 112.3.
<A NAME="RG34501ST-14">14</A>
Schomaker JM.
Delia TJ.
J. Org. Chem.
2001,
66:
7125
<A NAME="RG34501ST-15">15</A>
Darses S.
Genêt J.-P.
Brayer J.-L.
Demoute J.-P.
Tetrahedron Lett.
1997,
38:
4393
<A NAME="RG34501ST-16A">16a</A>
Pridgen LN.
Killmer LB.
Webb RL.
J. Org. Chem.
1982,
47:
1985
<A NAME="RG34501ST-16B">16b</A>
Pridgen LN.
Synthesis
1984,
1047
<A NAME="RG34501ST-16C">16c</A>
Wenkert E.
Hanna JM.
Leftin MH.
Michelotti EL.
Potts KT.
Usifer D.
J. Org. Chem.
1985,
50:
1125
<A NAME="RG34501ST-16D">16d</A>
Stanforth SP.
Tetrahedron
1998,
54:
263
<A NAME="RG34501ST-16E">16e</A>
Angiolelli ME.
Casalnuovo AL.
Selby TP.
Synlett
2000,
905