Abstract
Testosterone serum levels may influence the lipoprotein metabolism and possibly atherogenic risk. Our aim was to investigate the effects of long-term testosterone supplementation in hypogonadal men on multiple lipoprotein markers. 18 Hypogonadal men were studied before and after 3, 6, and 18 (n = 7) months of treatment with testosterone enanthate. During treatment, serum testosterone and estradiol increased, reaching normal levels (p < 0.0001 and 0.003, respectively). This was associated with a decrease in HDL cholesterol (from 1.40 ± 0.10 mmol/l to 1.22 ± 0.08 mmol/l, p < 0.001) after six months at the expense of HDL2 cholesterol (p < 0.01), as well as apoprotein A1 (from 139 ± 3.4 mg/dl to 126 ± 3.0 mg/dl, p < 0.005). Hepatic lipase activity increased (p < 0.05) and correlated positively with testosterone (r = 0.56, p < 0.02) and negatively with HDL cholesterol (r = - 0.58, p < 0.02). Total and LDL cholesterol, triglycerides, and apoprotein B did not increase. Among the seven patients who completed 18 months of treatment, triglycerides, total cholesterol, LDL and HDL cholesterol, as well as total cholesterol/HDL cholesterol ratio values did not differ from baseline while apoprotein A1 (p < 0.03) and HDL cholesterol (p < 0.015) remained decreased and hepatic lipase unchanged. Restoration of testosterone levels in hypogonadal men in this study did not reveal unfavorable changes based on total cholesterol/HDL cholesterol and LDL cholesterol/apoprotein B ratios, which are both atherogenic risk markers. Whether the changes in light of lipoprotein metabolism will adversely influence cardiovascular risk over time remains to be determined.
Key words
Hypogonadism - Testosterone Substitution - Lipids - Lipoproteins - Hepatic Lipase
1
Kirkland R T, Keenan B S, Probstfield J L, Patsch W, Lin T L, Clayton G W, Insull W .
Decrease in plasma high-density lipoprotein cholesterol levels at puberty in boys with delayed adolescence.
JAMA.
1987;
257
502-507
2
Haffner S M, Mykkänen L, Valdez R A, Katz M S.
Relationship of sex hormones to lipids and lipoproteins in nondiabetic men.
J Clin Endocrinol Metab.
1993;
77
1610-1615
3 Place V A. Transdermal testosterone replacement through genital skin. In: Nieschlag E, Behre HM (eds) Testosterone: action, deficiency and substitution. Berlin; Springer Verlag 1990: 165
4
Jockenhövel F, Bullmann C, Schubert M, Vogel E, Reinhardt W, Reinwein D, Müller-Wieland D, Krone W.
Influence of various modes of androgen substitution on serum lipids and lipoproteins in hypogonadal men.
Metabolism.
1999;
48 (5)
590-596
5
Behre H M, Nieschlag E.
Testosterone buciclate (20 Aet-1) in hypogonadal men: pharmacokinetics and pharmacodynamics of the new long-acting androgen ester.
J Clin Endocrinol Metab.
1992;
75
1204-1210
6
Zgliczynski S, Ossowski M, Slowinska-Srzednicka J, Brzezinska A, Zgliczynski W, Soszynski P, Chotkowska E, Srzednicki M, Sadowsdi Z.
Effect of testosterone replacement therapy on lipids and lipoproteins in hypogonadal and elderly men.
Atherosclerosis.
1996;
121
35-43
7
Tripathy D, Shah P, Lakshmy R, Reddy K S.
Effect of testosterone replacement on whole body glucose utilisation and other cardiovascular risk factors in males with idiopathic hypogonadotrophic hypogonadism.
Horm Metab Res.
1998;
30 (10)
642-645
8
Gutai J, LaPorte R, Kuller L, Dai F W, Falvo-Gerard L, Caggiula A.
Plasma testosterone, high density lipoprotein cholesterol and other lipoprotein fractions.
Cardiology.
1981;
48
897-902
9
Bagatell C J, Heiman J R, Matsumoto A M, Rivier J E, Bremner W J.
Metabolic and behavioral effect of high-dose, exogenous testosterone in healthy men.
J Clin Endocrinol Metab.
1994;
79
561-567
10
Sorva R, Kuusi T, Taskinen M R, Perheentupa J, Nikkila E A.
Testosterone substitution increases the activity of lipoprotein lipase and hepatic lipase in hypogonadal males.
Atherosclerosis.
1988;
69
191-197
11
Brinton E A.
Oral estrogen replacement therapy in postmenopausal women selectively raises levels and production rates of lipoprotein A-I and lowers hepatic lipase activity without lowering the fractional catabolic rate.
Arterioscler Thromb Vasc Biol.
1996;
16
431-440
12
Applebaum-Bowden D, McLean P, Steinmetz A, Fontana D, Matthys C, Warnick G R, Cheung M, Albers J J, Hazzard W R.
Lipoprotein, apolipoprotein, and lipolytic enzyme changes following estrogen administration in postmenopauseal women.
J Lipid Res.
1989;
30
1895-1905
13
Kuusi T, Nikkila E A, Tikkanen M J, Sipinen S.
Effect of two progestins with different androgenic properties on hepatic endothelial lipase and high density lipoprotein.
Atherosclerosis.
1985;
54
251-257
14
Enholm C, Huttunen J K, Kinnunen P J, Miettinen T A, Nikkila E A.
Effect of oxandrolone treatment on the activity of lipoprotein lipase, hepatic lipase and phospholipase A1 of human postheparin plasma.
N Engl J Med.
1975;
292
1314-1317
15
Guendouzy K, Jaspard B, Barbaras R, Motta C, Vieu C, Marvel Y, Chap H, Perret B, Collet X.
Biochemical and physical properties of remnant-HDL2 and of preβ1-HDL produced by hepatic lipase.
Biochemistry.
1999;
38
2762-2768
16
Assman A G, Jabs H, Kohnert U, Nolte W, Schriewer H.
LDL cholesterol determination in blood serum following precipitation of LDL with poly-vinil sulphate.
Clin Chim Acta.
1984;
140
77-83
17
Warnick G R, Benderson J, Albers J J.
Dextran sulfate-Mg2+ precipitation for quantitation of high-density lipoprotein cholesterol.
Clin Chem.
1982;
28
1379-1388
18 Warnick G R. Measurement and clinical significance of high density lipoprotein cholesterol: subclases. In: Rifai N, Warnick GR, Dominiczak MH (ed) Handbook of lipoprotein testing. AACC Press 1997: 251-266
19
Castelli W P.
Epidemiology of coronary heart disease. The Framingham Study.
Am J Med.
1984;
76
4-12
20
Hattori Y, Susuki M, Tsuchima M, Yoshida M, Tokunaga Y, Wang Y, Zhao D, Takeuchi M, Hara Y, Ryomoto K I, Ikebuchi M, Kishioka H, Mannami T, Baba S, Harano Y.
Development of approximate formula for LDLcholesterol, LDLapoB and LDLcholesterol/LDL apoB as indices of hyperapobetaliporoteinemia and small dense LDL.
Atherosclerosis.
1998;
138
289-299
21
Capell W H, Zambon A, Austin M A, Brunzell J D, Hokanson J E.
Compositional differences of LDL particles in normal subjects with LDL subclass phenotype A and LDL subclass phenotype B.
Arterioscler Thromb Vasc Biol.
1996;
16
1040-1046
22
Berg G, Siseles N, González A I, Contreras Ortiz O, Tempone A, Wikinski R.
Higher values of hepatic lipase activity in postmenopause: relationship with atherogenic intermediate density and low density lipoproteins.
Menopause.
2001;
8 (2)
51-57
23
Wang C, Eyre D R, Clark R, Kleinberg D, Newman C, Iranmanesh A, Veldhuis J, Dudley R E, Berman N, Davidson T, Barstow T J, Sinow R, Alexander G, Swerdloff R S.
Sublingual testosterone replacement improves muscle mass and strength, decreases bone resorption, and increases bone formation markers in hypogonadal men-a clinical research center study.
J Clin Endocrinol Metab.
1996;
81
3654-3662
24
Sih R, Morley J E, Kaiser F E, Perry III H M , Patrick P, Ross C.
Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial.
J Clin Endocrinol Metab.
1997;
82
1661-1667
25
Burris A S, Banks S M, Carter C S, Davidson T M, Sherins R J.
A long-term, prospective study of the physiologic and behavioral effects of hormone replacement in untreated hypogonadal men.
J Androl.
1992;
13
297-304
26
Goldberg R B, Rabin D, Alexander A N, Doelle G C, Getz G S.
Suppression of plasma testosterone leads to an increase in serum total and high density lipoprotein cholesterol and apoproteins-A-1 and B.
J Clin Endocrinol Metab.
1992;
116
967-973
27
Partsch C J, Weinbauer G F, Fang R, Nieschlag E.
Injectable testosterone undecanoate has more favourable pharmacokinetics and pharmacodynamics than testosterone enanthate.
Eur J Endocrinol.
1995;
132
514-519
28
Tan K CB, Shiu S WM, Kung A WC.
Alterations in hepatic lipase and lipoprotein subfractions with transdermal testosterone replacement therapy.
Clin Endocrinol.
1999;
51
765-769
29
Haffner S M, Kushwaha R S, Foster D M, Applebaum-Bowden D, Hazzard R W.
Studies on metabolic mechanism of reduced high density lipoprotein during anabolic steroid therapy.
Metabolism.
1983;
32
413-420
30
Roheim P S, Aszatalos B F.
Clinical significance of lipoprotein size and risk for coronary atherosclerosis.
Clin Chem.
1995;
41/1
147-152
31
Arver S, Dobs A S, Meikle A W, Caramelli K E, Rajaram L, Sanders S W, Mazer N A.
: Long-term efficacy and safety of a permeation-enhanced testosterone transdermal system in hypogonadal men.
Clin Endocrinol.
1997;
47
727-737
32
Castelli W P, Garrison R J, Wilson P W, Abbott R D, Kalousdian S, Kannel W B.
Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study.
JAMA.
1986;
256
2835-2838
33
Dobs A, Bachorik P, Arver S, Meikle A, Sanders S, Caramelli K, Mazer N.
Interrelationships among lipoprotein levels, sex hormones, anthropometric parameters, and age in hypogonadal men treated for 1 year with a permeation-enhanced testosterone transdermal system.
J Clin Endocrinol Metab.
2001;
86
1026-1033
34
Tchernof A, Labrie F, Bélanger A, Prud'homme D, Bouchard C, Tremblay A, Nadeau A, Després J P.
Relationship between endogenous steroid hormone, sex hormone-binding globulin and lipoprotein levels in men: contribution of visceral obesity, insulin levels and other metabolic variables.
Atherosclerosis.
1997;
133
235-244
35
Marin P, Holmäng S, Jansson L, Sjöström L, Kvist H, Holm G, Lindstedt G, Björntorp P.
The effects of testosterone treatment on body composition and metabolism in middle-aged obese men.
Int J Obes.
1992;
16
991-997
36
Tchernof A, Labrie F, Bélanger A, Després J P.
Obesity and metabolic complications: contribution of dehydroepiandrosterone and other steroid hormones.
J Endocrinol.
1996;
150
S155-S164
37
Tenover J S.
Effects of testosterone supplementation in the aging male.
J Clin Endocrinol Metab.
1992;
75
1092-1098
Gabriela Berg
Lab. Lípidos y Lipoproteínas · Dto. Bioquímica Clínica, Fac. Farmacia y Bioquímica · Universidad de Buenos Aires
Junín 956 (C1113AAD) · Buenos Aires · Argentina
Telefon: + 54 (11) 4964-8297
Fax: + 54 (11) 4508-3645
eMail: gaberg@dbc.ffyb.uba.ar